ME551 Seminar
  • FENS
  • ME551 Seminar

You are here

Seminar Title:
From Microdroplets and Microfluidic Reactors to Functional Nanomaterials and Smart Surfaces
Droplet-based microfluidic systems are promising for biological and chemical reactions as they provide rapid mixing times, precise concentrations and manipulation of samples as individual packages. These systems have several lab on a chip applications such as analysis of biological samples and synthesis of nanomaterials for sensor technology. Droplets can be either manipulated on surfaces by creating energy gradients or they can be transported inside microchannels by using a carrier fluid. In the first part of this talk, the manipulation of liquid droplets on surfaces by using texture ratchets will be discussed. In this technique, droplets can be moved selectively based on their volume and viscosity. The second part of this talk will focus on using droplet-based microfluidics to synthesize nanoparticles. These microfluidic reactors – or microreactors – show promise for the synthesis of nanoparticles with well controlled size, size distribution and shape. Compared to batch-wise synthesis techniques, microfluidic technology can provide precise control of the reaction conditions such as temperature, residence time and mixing ratio of reagents. Two different microreactors will be introduced. The first microreactor is made out of a polymer material and synthesizes magnetic iron-oxide nanoparticles by mixing two reagents at precise concentrations. The second microreactor is designed to produce monodisperse nanoparticles by utilizing thermally isolated heated and cooled regions for separating nucleation and growth processes. This reactor is made out of silicon and demonstrates the synthesis of TiO2 nanoparticles. At the end of this section, a method of assembling nanoparticles on a substrate will also be introduced. Finally possible future directions of this research will be discussed.

Short CV:
Yegân Erdem is a Ph.D. candidate at University of California, Berkeley in the Department of Mechanical Engineering with minors in Materials Science and Electrical Engineering. She is working in Prof. Albert Pisano’s and Prof. Fiona Doyle’s research laboratories towards developing microfluidic systems for controlled synthesis of nanoparticles. She received her M.S. degree in Mechanical Engineering from the University of Washington, Seattle, in 2008 where she worked in Prof. Karl Böhringer’s research group on developing textured surfaces for droplet transport and characterization of a walking microrobot. She received her B.Sc. degree in Mechatronics Engineering from Sabancı University, İstanbul, in 2006. Her research areas and interests include microfluidics, MEMS, nanomaterials, nanosensors and energy harvesting.