APPENDIX A.14.2. MPE Calculations and Limits

Eye exposure to a CW Nd:YAG laser

Wavelength (λ) = 1.064 µm = 1,064 nm Assume accidental eye exposure (probably from specular or diffuse reflection). Exposure duration t = 10s (since not in 400 to 700 nm visible range) From Table A, MPE = 5.0 Cc x 10-3 W/cm2 . Using CC = 1 from Table C for λ = 1.064 µm, MPE = 5.0 x 10-3 W/cm2 or 0.005 W/cm2 .

Skin exposure to a CW Nd:YAG laser

Assume exposure duration is 10 s or longer. Using Table B for skin exposure, MPE = 0.2 CA W/cm2 . From Table C, CA = 5.0 for λ = 1.064 µm. MPE = 1.0 W/cm2

Eye exposure to single-pulsed Ruby laser $\lambda = 694$ nm

Pulse duration 30 ns, FWHM Using Table A for pulses between 10-9 and 18 x 10-6 seconds, MPE = $0.5 \times 10-6 \text{ J/cm2}$

Eye exposure to Repetitively-Pulsed Nd:YAG laser

Pulse Repetition Frequency (PRF) = 30 hz (pulses per second) Variable pulse width, from 7 to 30 ms **Rule 1 –** No single pulse in a chain may exceed the MPE.

For worst case, use smallest pulse width (7 ms) For $\lambda = 1.064 \mu m$, MPESP = 9.0 CC t 0.75 x 10-3 From table C, CC = 1.0, so MPESP = (9.0)(1.0)(7x10-3) 0.75 x 10-3 J/cm2 MPE1 = 0.218 mJ/cm2.

Rule 2 – Average Power MPE The exposure from any group of pulses delivered in time T must not exceed the MPE for time T.

For infrared region T = 10 seconds.

Divide MPE for a 10-second exposure by the number of pulses, n, during the 10-second period.

For this example, n = 300, so MPE/pulse = ((9.0)(1.0)(100.75) mJ/cm2)/300)MPE2 = 0.169 mJ/cm2.

Rule 3 – Multiple-Pulse MPE For thermal injury, the exposure for any single pulse within a group of pulses must not exceed the single-pulse MPE multiplied by a multiple-pulse correction factor CP.

From Table 3, CP = n-0.25, where n is the number of pulses in Tmax = 10 seconds. CP = 300 - 0.25 = 0.240

MPE3 = $52.3 \,\mu$ J/cm2.

Conclusion: Rule 3 produces the most limiting case, so MPE/pulse = 52.3 μ J/cm2 To express the limit as average irradiance MPE, multiply by the PRF = 30 Hz MPEE = 1.57 mW/cm2 or 1.57x10-3 W/cm2.

Table A: MPE for Ocular Exposure (Intrabeam Viewing)

<u> </u>				
Wavelength (µm)	Exposure Duration, t (s)	MPE		
		(J cm ⁻²)	(W cm ⁻²)	
Ultraviolet				
0.180 to 0.302	10 ⁻⁹ to 3 x 10 ⁴	3 x 10 ⁻³	[
0.303	10 ⁻⁹ to 3 x 10 ⁴	4 x 10 ⁻³		
0.304	10 ⁻⁹ to 3 x 10 ⁴	6 x 10 ⁻³		
0.305	10 ⁻⁹ to 3 x 10 ⁴	10 x 10 ⁻³		
0.306	10 ⁻⁹ to 3 x 10 ⁴	16 x 10 ⁻³		
0.307	10 ⁻⁹ to 3 x 10 ⁴	25 x 10 ⁻³		
0.308	10 ⁻⁹ to 3 x 10 ⁴	40 x 10 ⁻³		
0.309	10 ⁻⁹ to 3 x 10 ⁴	63 x 10 ⁻³		
0.310	10 ⁻⁹ to 3 x 10 ⁴	0.1		
0.311	10 ⁻⁹ to 3 x 10 ⁴	0.16		
0.312	10 ⁻⁹ to 3 x 10 ⁴	0.25		
0.313	10 ⁻⁹ to 3 x 10 ⁴	0.40		
0.314	10° to 3 x 104	0.63		
0.315 to 0.400	10° to 10	0.56 t ^{0.25}	1	
0.315 to 0.400	10 x 3 x 10 ⁴	1.0	1	
NOTE: To calculate MPE, u	se the J/cm ² value shown or 0.56 t ^{0.2}	5, whichever is lower.		
Visible and Near Infrared				
0.400 to 0.700	10 ⁻⁹ to 18 x 10 ⁻⁶	0.5 x 10 ⁻⁶		
0.400 to 0.700	18 x 10 ⁻⁶ to 10	1.8 t ^{0.75} x 10 ⁻³		
0.400 to 0.450	10 to 100	1.0 x 10 ⁻²		
0.450 to 0.500	10 to T ₁	<u> </u>	1 x 10 ⁻³	
0.450 to 0.500	T ₁ to 10 ²	C _B x 10 ⁻²	1	
0.400 to 0.500	100 to 3 x 104		C _B x 10 ⁻⁴	
0.500 to 0.700	10 to 3 x 10 ⁴	1	1 x 10 ⁻³	
0.700 to 1.050	10° to 18 x 10°	5.0 C _A x 10 ⁻⁷	1	
0.700 to 1.050	18 x 10 ⁻⁶ to 10	1.8 CA 10.75 x 10-3	<u> </u>	
0.700 to 1.050	10 to 3 x 10 ⁴	1	C _A x 10 ⁻³	
1.050 to 1.400	10° to 50 x 106	5.0 Cc x 10 ⁻⁶		
1.050 to 1.400	50 x 10 ⁻⁶ to 10	9.0 C _c t ^{0.75} x 10 ⁻³	1	
1.050 to 1.400	10 to 3 x 10 ⁴		5.0 Cc x 10 ⁻³	
Far Infrared				
1.400 to 1.500	10 ⁻⁹ to 10 ⁻³	0.1		
1.400 to 1.500	10 ⁻³ to 10	0.56 t ^{0.25}	- <u> </u>	
1.400 to 1.500	10 to 3 x 10 ⁴	<u></u>	0.1	
1.500 to 1.800	10° to 10	1.0		
1.500 to 1.800	10 to 3 x 10 ⁴		0.1	
1.800 to 2.600	10 ⁻⁹ to 10 ⁻³	0.1	1	
1.800 to 2.600	10 ⁻³ to 10	0.56 t ^{0.25}	-i	
1.800 to 2.600	10 to 3 x 10 ⁴		0.1	
2.600 to 103	10 ⁻⁹ to 10 ⁻⁷	1.0 x 10 ⁻²		
2.600 to 10 ³	10 ⁻⁷ to 10	0.56 t ^{0.23}	1	
2.600 to 10 ³	10 to 3 x 10 ⁴		0.1	
Notes:	1		1	

1.

For multiple pulses, apply correction factor C_P given in Table C. For information on correction factors T_I , C_B , C_A , C_P and C_E , see Table C

General Notes:

The MPE for diffuse reflections at wavelengths between 0.400 and 1.400 μm is obtained by multiplying the corresponding MPEs above by C_E (see Table C for correction factors and T₁).
 For repeated (pulsed) exposures see ANSI Z136.1-2000, section 8.2.3.

Wavelength	Exposure	MPE	MPE	
(µm)	Duration, t (s)	(J cm ⁻²)	(W cm ⁻²)	
Ultraviolet				
0.180 to 0.302	10 ⁻⁹ to 3 x 10 ⁴	3 x 10 ⁻³		
0.303	10 ⁻⁹ to 3 x 10 ⁴	4 x 10 ⁻³		
0.304	10 ⁻⁹ to 3 x 10 ⁴	6 x 10 ⁻³		
0.305	10 ⁻⁹ to 3 x 10 ⁴	1.0 x 10 ⁻²		
0.306	10 ⁻⁹ to 3 x 10 ⁴	1.6 x 10 ⁻²		
0.307	10 ⁻⁹ to 3 x 10 ⁴	2.5 x 10 ⁻²		
0.308	10^{-9} to 3 x 10^{4}	4.0 x 10 ⁻²		
0.309	10^{-9} to 3 x 10^{4}	6.3 x 10 ⁻²		
0.310	10 ⁻⁹ to 3 x 10 ⁴	1.0 x 10 ⁻¹		
0.311	10 ⁻⁹ to 3 x 104	1.6 x 10 ⁻¹		
0.312	10^{-9} to 3 x 10^{4}	2.5 x 10 ⁻¹		
0.313	10^{-9} to 3 x 10^{4}	4.0 x 10 ⁻¹		
0.314	10^{-9} to 3 x 10^{4}	6.3 x 10 ⁻¹		
0.315 to 0.400	10-9 to 10	$0.56 t^{0.25}$		
0.315 to 0.400	10 x 10 ³	1		
0.315 to 0.400	10 ³ to 3 x 10 ⁴		1 x 10 ⁻³	
NOTE: 1. To calculate MPE, use the J/cm ² value shown or 0.56 $t^{0.25}$, whichever is lower.				
Visible and Near Infra	red			
Wavelength	Exposure	MPE		
(μm)	Duration, t (s)	(J cm ⁻²)	(W cm ⁻²)	
	10 ⁻⁹ to 10 ⁻⁷	2C _A x 10 ⁻²		
0.400 to 1.400	10 ⁻⁷ to 10	$1.1C_{\rm A} t^{0.25}$		
	10 to 3 x 10 ⁴		0.2C _A	
Far Infrared				
Wavelength	Exposure	MPE		
(μm)	Duration, t (s)	(J cm ⁻²)	(W cm ⁻²)	
1.400 to 1.500	10 ⁻⁹ to 10 ⁻³	10-1		
1.400 to 1.500	10 ⁻³ to 10	$0.56 t^{0.25}$		
1.400 to 1.500	10 to 3 x 10 ⁴		0.1	
1.500 to 1.800	10 ⁻⁹ to 10	1.0		
1.500 to 1.800	10 to 3 x 10 ⁴		0.1	
1.800 to 2.600	10 ⁻⁹ to 10 ⁻³	0.1		
1.800 to 2.600	10 ⁻³ to 10	$0.56 t^{0.25}$		
1.800 to 2.600	10 to 3 x 10 ⁴		0.1	
2.600 to 10 ³	10 ⁻⁹ to 10 ⁻⁷	1 x 10 ⁻²		
2.600 to 10 ³	10 ⁻⁷ to 10	$0.56 t^{0.25}$		
2.600 to 10 ³	10 to 3 x 10 ⁴		0.1	

Parameters/Correction Factors	Wavelength (µm)	
$T_1 = 10 \times 10^{20(\lambda - 0.450)}$ *	0.450 to 0.500	
$T_2 = 10 \times 10^{(\alpha-1.5)/98.5 **}$	0.400 to 1.400	
C _B = 1.0	0.400 to 0.450	
$C_{\rm B} = 10^{20(\lambda - 0.450)}$	0.450 to 0.600	
C _A = 1.0	0.400 to 0.700	
$C_A = 10^{2(\lambda - 0.700)}$	0.700 to 1.050	
C _A = 5.0	1.050 to 1.400	
$C_P = n^{-0.25 ***}$	0.180 to 1000	
$C_E = 1.0$ $\alpha < \alpha_{min}$	0.400 to 1.400	
$C_E = \alpha / \alpha_{min}$ $\alpha_{min} \le \alpha \le \alpha_{max}$	0.400 to 1.400	
$C_E = \alpha^2 / (\alpha_{max} \alpha_{min})$ $\alpha > \alpha_{max}$	0.400 to 1.400	
C _c = 1.0	1.050 to 1.150	
$C_{\rm C} = 10^{18(\lambda-1.150)}$	1.150 to 1.200	
C _C = 8	1.200 to 1.400	
* $T_1 = 10 \text{ s for } \lambda = 0.450 \mu\text{m}, \text{ and } T_1 = 100 \text{ s for } \lambda = 0.500 \mu\text{m}.$ ** $T_2 = 10 \text{ s for } \alpha < 1.5 \text{mrad}, \text{ and } T_2 = 100 \text{ s for } \alpha > 100 \text{mrad}.$ *** See ANSI Z136.1-2000 Section 8.2.3 for discussion of C _P and Section 8.2.3.2 for discussion of pulse repetition frequencies below 55 kHz (0.4 to 1.05 μm) and below 20 kHz (1.05 to 1.4 μm)		
Notes: 1. For wavelengths between 0.400 and 1.400 μ m: $\alpha_{min} = 1.5$ mrad and $\alpha_{max} = 100$ mrad 2. Wavelengths must be expressed in micrometers and angles in milliradians for calculations. The wavelength region λ_1 to λ_2 means $\lambda_1 \le \lambda < \lambda_2$, e.g., 0.550 to 0.700 μ m means 0.550 $\le \lambda < 0.700 \ \mu$ m.		

Table C: Parameters and Correction Factors