Design and Development of Vision Based Localization Algorithms for Automatic Parking

ENGINEERING AND NATURAL SCIENCES **ELECTRONICS ENGINEERING** COMPUTER SCIENCE AND ENGINEERING

Students: Melih Arda Düzçeker Serif Soner Serbest

Supervisor: Mustafa Ünel

Company Advisor: Eren Aydemir

EORDØJØSAN

ABSTRACT

The project aims to provide an exciting potential to reduce the workload on the driver and automate the task of parking of long-vehicles. In the scope of this project, we designed and developed an offline mapping pipeline supported by INS/GNSS sensor [5] to create a highly accurate feature-based map. On top of that, we designed and developed a localize our vehicle precisely in real time in a given map. We implemented our pipelines in Python utilizing OpenCV library where needed. We used KITTI odometry benchmarks [6] to test our system. Our test results show that the system can work up to 3.5 fps and localize the vehicle with an approximately 0.4 m RMSE measured in different environments.

INTRODUCTION

- U.S. Department of Transportation reveals that 94% of the road accidents are caused by the drivers [1].
- Because human drivers experience fatigue, there are strict laws enforcing truck drivers to drive for a limited amount of time in a day which makes the transportation operations inefficient and costly [2].
- Autonomous vehicles are considered as the solution, benefiting from increased safety, increased traffic flow, and reduced mobility and infrastructure cost.

- Autonomous driving is a highly attractive subject for industry and academia as well. Google, GM, Tesla, Ford, BMW and Nissan are some of the leading companies in this multi-billion dollar industry.
- There are 6 levels of autonomy established by SAE [3] ranging from fully manual to fully autonomous systems.
- Currently, autonomous vehicle industry can provide partial autonomy (Level 2 & 3) and is aiming for full autonomy (Level 4 & 5) in the foreseeable future [4].
- In our project, inline with this vision, we are aiming to design and develop vision based localization algorithms for automatic parking to be implemented on semi-trailer trucks.
- The backbone of a such autonomous system is being able to localize the vehicle accurately at all times during the process. Therefore we designed our system from scratch with the objectives:
 - Design specific camera setup for the automatic parking of semi-trailer trucks
 - Leverage the open-sky operation and the existence of an accurate INS/GNSS module
 - Design and implement stereo vision based offline mapping and online localization algorithms

Modelling of the Semi-Trailer Truck and Camera Setup

We designed a cost-efficient solution which satisfies the needs of visionbased automatic parking, after modelling and analyzing several different camera setups.

- Stereo camera is used in front of the truck for localization and mapping purposes.
- Two monocular wide-angle cameras are located on the sides of the truck

KITTI Odometry Dataset 00 2889 keyframes – 433,435 mappoints

KITTI Odometry Dataset 05 1672 keyframes – 235,013 mappoints

- Two examples of maps from the KITTI Datasets are provided above.
- All the datasets that we mapped are recorded in urban areas of Karlsruhe, Germany. Datasets include crooked roads, loops, pedestrians, and moving bikers and vehicles.
- Offline maps are successfully created with strong and plentiful mappoints and keyframes and hardly trackable, weak mappoints are successfully ruled out from the map during the process.

for parking spot detection.

Two monocular wide-angle cameras at the back of the truck and the trailer are located to observe the back. In the situation where truck is connected to a trailer, the camera at the back of the truck is used to calculate the relative pose of the trailer to the pose of the truck.

Algorithms

- During offline mapping, the system acquires the pose of the vehicle precisely from INS/GNSS sensors [5] and decides whether the current frame should be added to the map as a keyframe.
- The system performs bundle adjustment optimizations regularly to place mappoints optimally and to find outlier observations.

• In the KITTI Dataset 05, we localize our vehicle with an 0.20-meter mean error and 0.04 variance.

- We failed to keep error under 1 meter in certain situations:
 - There are other vehicles that are moving and occupying substantial portion of the images. This scenario results as an illusion of displacement even though our vehicle is not moving.
 - Certain frames does not have close objects to the camera.
- Although the system obtains inaccurate results in these situations, it successfully manages to recover its position as the localization goes on.

KITTI Dataset [6]	Our Results (m)	ORB-SLAM2 (m) [7]
00	0.4	1.3
05	0.3	0.8
07	0.5	0.5

- There is a lack of past literature work on a complete system similar to ours which we can compare with.
- We achieved less translation RMSE compared to state-of-the-art ORB-SLAM2, although comparison is not fair since SLAM is a harder problem to solve.
- We managed to perform localization up to 3.5 fps.

CONCLUSION & FUTURE WORK

- We designed a cost-efficient camera setup for the purpose of automatic parking of semi-trailer trucks.
- We successfully mapped large datasets from urban areas.
- We obtained 0.4 m RMS translation errors during of localization of in created maps.
- Our system works in real-time with 3.5 fps where the car can travel with a speed up to 15 km/h.
- Future works of this project can be stated as:
 - Park spot detection using two monocular wide-angle cameras are located on the sides of the truck Ο
- The system eliminates inconsistent mappoints and keeps only strong, easily trackable ones in the map.

- At the start-up, the algorithm performs a global localization to find the best possible location of the vehicle in the entire map (green loop).
- The algorithm continuously estimates the new location of the vehicle by predicting vehicle's motion and by tracking previous frame.
- Estimations are improved by tracking the offline map during motion-only bundle adjustment. •
- In the situations where the vehicle moves with an unpredictable behavior and tracking is lost, the system tries to localize itself globally like at the start-up.
- To increase the fps rate, modules of localization pipeline are reordered and divided into two pieces and we process these pieces in parallel in two processor.

- Obstacle detection using all cameras to make the truck aware of its environment at all times
- Motion planning to decide necessary maneuvers to park the semi-trailer truck
- Performance improvements to increase localization accuracy and frame rate

[1] U.S. Department of Transportation, "Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey", 2015. Available: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115. [Accessed 2018]

[2] Traffic Safety Store, "Why Is The Trucking Industry Excited About Autonomous Technology?", 2017. Available: https://www.trafficsafetystore.com/blog/autonomous-trucks-future-shipping-technology. [Accessed 2018]

[3] Society of Automotive Engineers (SAE), "Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles", 2016. Available: www.sae.org/standards/content/j3016_201609. [Accessed 2018]

[4] Car And Driver, "Path to Autonomy: Self-Driving Car Levels 0 to 5 Explained", 2017. Available: https://www.caranddriver.com/features/path-toautonomy-self-driving-car-levels-0-to-5-explained-feature. [Accessed 2018]

[5] OXTS RT3003, "www.oxts.com," [Online]. Available: https://www.oxts.com/app/uploads/2017/07/RT3000-brochure-170606.pdf. [Accessed 2018]

[6] Geiger, P. Lenz and R. Urtasun, "Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite," in Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[7] R. Mur-Artal and J. Tardos, "ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras.," IEEE Transactions on Robotics, vol. 33, pp. 1255-1261, 2017.