Delivery Route Optimization at

Faculty Member(s) Company Advisor(s)
Bülent Çatay
Ferhan Tekin
Musa Demirok

\author{

Student(s)

 Furkan Kerim Yıldırım Doğa Anık Ahmet Kemal Ceylan Selhan Berber Senih Berkay Akın}

PROJECT DETAILS

The objective function (1) aims to minimize the total costs associated with routing and visiting customers. The visiting cost is incurred when a truck serves multiple customers, and the objective is to minimize this cost. Constraint (2) ensures that each customer can be visited by only one vehicle. Constraints (3) and (4) guarantee that every vehicle starts its tour from the depot and ends at a dummy destination point. Constraints (5) and (6) serve the same purpose as (3) and (4) but are included to reduce solution time without changing the solution itself. Constraints (7) and (8) state that if a vehicle uses a route segment between nodes i and j, it must visit both i and j. Constraint (9) ensures that the number of vehicles entering and leaving a node is equal. Constraint (10) limits the total demand served by each vehicle to not exceed its capacity. Constraint (11) determines the most expensive visited node for calculating the routing cost in the objective function. Constraint (12) ensures that a vehicle can travel between nodes i and j using only allowed arcs due to clustering. Constraints (13) and (14) represent time window constraints that ensure arrival times at customer nodes fall within specific time windows.

Fig.3. Comparison of Existing Vehicle Routes wih Proposed Vehicle Routes
The Gurobi solution obtained for April 6, 2022, shows that the company utilized 10 vehicles to distribute orders, covering a total distance of 683.236 km at a cost of 19,441.98 Turkish liras. Our optimization resulted in a reduction in total traveled distance to 534.009 km , costing $14,568.58$ Turkish lira, reflecting a 21.84% decrease in distance and a 25.06% decrease in cost for that day with 7 vehicles.
routes to minimize travel distance, resulting in cost savings and improved operational efficiency. Another crucial objective is to provide the company with a visual representation of the proposed vehicle route, allowing for easy understanding and evaluation. Lastly, we will analyze the proposed vehicle route and compare it with the existing routes currently used by the company, identifying potential improvements and assessing the overall efficiency gains that can be achieved.

PROJECT DETAILS

miee of ofies: 18 dic
mer of total deand

 Vehircle istance: 48.473 km m
 , Capactiy: 19, Type: 0
, Denand: 6.0 , Distance: 22.891 km
Demand: $6.0,0$ Distance: 28.456 km

 km Vehicle
km Vehicle
Order Venicle 14 , Driver: ismait gïney, Capactiy: 19, Type: ©
Order 1, Name: 1321 - Kadir Has, Demand: 7.0, Distance

Total distance: $534,009 \mathrm{~km}$
Total cost: 14568.5780427153 Total cost: 14568.57884427153
Number of ut uilized vhicles:
N Number of tutilized venicles: 9 Number of utilized venicles:
m Number of unutilized vehicies:
Avarage distance: 7 f.287km
Avarage cost: 2081.225438959327

Fig.4. Analysis Report for Proposed Vehicle Routes

CONCLUSION

The primary objective of this project was to develop a comprehensive Decision Support System (DSS) capable of identifying optimal routes that fulfill customer demands, adhere to specified time windows, and provide visual representations of these routes. The model was successfully implemented using the Gurobi optimizer, resulting in cost reductions and minimized total distance traveled. However, the heuristic algorithm was not completed, leading to its exclusion from the integrated DSS. Nevertheless, the project achieved its main goal of creating an efficient DSS solution that positively impacted cost efficiency and route optimization. Due to the lack of usable sample data, our test runs were limited by a few shipment dates. As a result of our testing we have reached a improvement of 15% to 25% cost reduction. In addition, we have observed reduction of 11% to 22% in total distance travelled. In an event of E -Bebek switcing to a distance based costing system, we have foreseen both of the parties (E -Bebek and logistics company) reaching a mutual improvement.

REFERENCES

Bräysy, O., \& Gendreau, M. (2005). Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms. In Transportation Science (Vol. 39, Issue 1, pp. 104-118). Institute for Operations Research and the Management Sciences (INFORMS). https://doi.org $10.1287 /$ /tsc. 1030.0056
El-Sherbeny, N. A. (2010). Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic methods. In Journal of King Saud University - Science (Vol. 22, Issue 3, pp. 123-131). Elsevier BV https://doi.org/ 10.1016/j.jksus.2010.03.002
Solomon, M. M. (2005). VRPTW BenchmarkProblems. Retrieved April 16, 2023, from
http://web.cba.neu.edu/~msolomon/problems.htm
Toth, P., \& Vigo, D. (2002). The Vehicle Routing Problem. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898718515
Tuyttens, D., Teghem, J., \& El-Sherbeny, N. (2004). A Particular Multiobjective Vehicle Routing Problem Solved by Simulated Annealing. In Lecture Notes in Economics and Mathematical Systems (pp.133-152). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-17144-4 5
Wester, V. D., A Genetic Algorithm for the Vehicle Routing Problem. Master's Thesis, University of Tennessee, 1993 https://trace.tennessee.edu/utk gradthes/4850

