
Student(s) Faculty Member(s) Company Advisor(s)

Developers and testers encounter with many challenges in software development

lifecycles. During the testing processes, several bugs and defects of a product are

detected by testers. Each bug is submitted to a bug tracking system with its relevant

information such as summary, severity and priority. This project aims to simplify and

shorten bug triaging process by finding the duplicate bugs and grouping them

together.

ABSTRACT

PROJECT DETAILS (AUTOMATED DUPLICATE BUG DETECTION)

PROJECT DETAILS (SEVERITY PREDICTION)

Automated Bug Triaging Using Machine Learning

Erdem Bozkurt
Emre Özdinçer
Oğuz Özsaygın
Ege Yapıcıoğlu

Berrin Yanıkoğlu
Cemal Yılmaz

Serter Bekler

After calculating cosine similarities and seeing them in a histogram, we also tried an

approach with k-means algorithm for Firefox. In this step we also did some

preprocessing such as removing stop words and we also used TfIdfVectorizer (tf-idf

instead of bag of words). Although in some cases this approach didn’t gave bad results,

it wasn’t reliable. Also we had to give cluster count, to get a result.

Therefore we abandoned k-means approach and returned back to calculating cosine

similarities for clustering. This time we did calculate cosine similarities in a different

way. We ensured that only duplicates from same clusters were compared, and we also

took random bugs to have a non duplicate group to create a baseline for comparison.

Also we had preprocessing such as removing stop words and stemming with NLTK

library. We also had to use 2017 data as base, add some bugs from 2007-2017 data,

and remove some from 2017 data. We had to do this because for clustering bugs we

used bug_id field, but we either didn’t have some of the bugs with those id’s as

downloaded, and when we removed those cluster had 1 item only.

After the clustering step, we did use bag of words approach and found cosine

similarities of bugs in top 5 products. In this step we didn’t use any preprocessing

methods. We also selected same amount of random bugs and also calculated their

cosine similarities to see if we can use cosine similarities to identify duplicates.

OBJECTIVES

• To implement a machine learning system that successfully identifies bugs as

duplicate and attaches it to a previous bug, therefore saving development time

• To deploy this system in Siemens’ development environment

REFERENCES

[1] Bugzilla Main Page, https://bugzilla.mozilla.org, last accessed 2018/02/01.

[2] Scikit-learn: Unsupervised learning, http://scikit-

learn.org/stable/unsupervised_learning.html, last accessed 2018/05/09

[3] NTLK Natural Language Processing Tool Kit, https://www.nltk.org/ , last accessed

2018/05/01

Conclusion:

With our final approach we had managed to find a pattern such that if a bug pair had

cosine similarity score ≥ 0.3 we can say they are duplicates with very high probability.

If we also include component comparison, this also enhances that probability.

Siemens

We used Mozilla’s Bugzilla repository as our data source. All our approaches were done

with Python, and we also used libraries such as Scikit-learn and NLTK for text processing

and machine learning.We downloaded all bugs which were created in the last 10 years

which in total accounted for 952,361 bugs. We decided to focus on top 5 products (

Core, Firefox, Firefox OS, Toolkit, Thunderbird) because they contained almost half of the

bugs. Our first step was to cluster the duplicates we had in those bugs product by

product. For this we used bug_id and dupe_of fields, since if a bug had dupe_of field not

empty, it contained the id of one of it’s duplicates. We used this approach for all bugs we

had and the ones created in 2017.

Figure 2, Duplicate clusters for top 2
products, Core and Firefox

Figure 3, Duplicate clusters for top 2 products,
 Core and Firefox (only 2017 data)

Figure 1, Bug Triaging Lifecycle Example

Figure 7, Cosine similarity histogram with preprocessing
and adjusting pairs for product Firefox

Figure 4, Initial cosine similarity
histogram for Core

Figure 5, Initial cosine similarity
histogram for Firefox

Figure 6, Cosine similarity histogram with preprocessing
and adjusting pairs for product Core

https://bugzilla.mozilla.org/
https://bugzilla.mozilla.org/
http://scikit-learn.org/stable/unsupervised_learning.html
http://scikit-learn.org/stable/unsupervised_learning.html
http://scikit-learn.org/stable/unsupervised_learning.html
https://www.nltk.org/
https://www.nltk.org/
https://www.nltk.org/

