Automated Bug Triaging Using Machine Learning A GINEEPNG AND

Universitesi| NATURAL SCIENCES

Siemens

Student(s) Faculty Member(s) Company Advisor(s)

Erdem Bozkurt : v
Emre Ozdincer Berrin Yanikoglu Serter Bekler

Oguz Ozsaygin Cemal Yilmaz
Ege Yapicioglu

4 N O N

A B ST R ACT Cosine similarity histogram for Firefox —
g Optional)
ig“h%‘;‘;s‘g}f ON_DEV]
- A Y,
. § "
vew |l Sty | wl e | pibedand
e [MODIFIED J
cantfix
rawhide CLOSED J‘——{ NEEDINFO +
package submitted
wontfix to bodhi
.. (testing repo) and 08
errata T auto state change
%ggeztﬁ: > I o] . ' SO Figure 5, Initial cosine similarity
auto state change histogram for Firefox
Figure 1, Bug Triaging Lifecycle Example After calculating cosine similarities and seeing them in a histogram, we also tried an
approach with k-means algorithm for Firefox. In this step we also did some
Developers and testers encounter with many challenges in software development preprocessing such as removing stop words and we also used TfldfVectorizer (tf-idf
lifecycles. During the testing processes, several bugs and defects of a product are instead of bag of words). Although in some cases this approach didn’t gave bad results,
detected by testers. Each bug is submitted to a bug tracking system with its relevant it wasn’t reliable. Also we had to give cluster count, to get a result.

information such as summary, severity and priority. This project aims to simplify and

shorten bug triaging process by finding the duplicate bugs and grouping them . _
Therefore we abandoned k-means approach and returned back to calculating cosine

together. T . L. . R .
similarities for clustering. This time we did calculate cosine similarities in a different
OBJECTIVES way. We ensured that only duplicates from same clusters were compared, and we also
took random bugs to have a non duplicate group to create a baseline for comparison.
* To implement a machine learning system that successfully identifies bugs as Also we had preprocessing such as removing stop words and stemming with NLTK
duplicate and attaches it to a previous bug, therefore saving development time library. We also had to use 2017 data as base, add some bugs from 2007-2017 data,
* To deploy this system in Siemens’ development environment and remove some from 2017 data. We had to do this because for clustering bugs we
used bug_id field, but we either didn’t have some of the bugs with those id’s as
PROJECT DETAILS (AUTOMATED DUPLICATE BUG DETECTlON)_ downloaded, and when we removed those cluster had 1 item only.
We used Mozilla’s Bugzilla repository as our data source. All our approaches were done e

with Python, and we also used libraries such as Scikit-learn and NLTK for text processing
and machine learning.We downloaded all bugs which were created in the last 10 years

which in total accounted for 952,361 bugs. We decided to focus on top 5 products (

Core, Firefox, Firefox OS, Toolkit, Thunderbird) because they contained almost half of the

bugs. Our first step was to cluster the duplicates we had in those bugs product by

product. For this we used bug_id and dupe_of fields, since if a bug had dupe_of field not

empty, it contained the id of one of it’s duplicates. We used this approach for all bugs we

had and the Ones CreatEd in 2017, Duplicate/non duplicate count: 4813

Cluster count{duplicate): 1885
Min/Max item count at those clusters: 2/25

duplicate_cluster-Core txt duplicate_cluster_2017-Core txt

Figure 6, Cosine similarity histogram with preprocessing
and adjusting pairs for product Core

For product Firefox

N & g 8 5 B
[T = T TR o TR — R~

Cosine similarty histegram for Firefox

T T T
10 11 12
Bug Amount Inside Cluster

duplicate_cluster-Firefox txt duplicate_cluster_2017-Firefox.txt

ha =
g &8 &8 8 =

27
o mpmmoLL el e e 28234221 31112121114 1213114
T8 91011121514 151617 15819 20 21 22 23 24 25 26 27 28 29 30 31 33 34 36 37 39 40 42 44 45 47 45 49 54 62 64103
Bug A i

Figure 2, Duplicate clusters for top 2 Figure 3, Duplicate clusters for top 2 products,
products, Core and Firefox Core and Firefox (only 2017 data)
D;plicate!non{jup}l:cate}fcuunt: 3217
After the clustering step, we did use bag of words approach and found cosine in/tex ften count at those clusters: 2/32
similarities of bugs in top 5 products. In this step we didn’t use any preprocessing Figure 7, Cosine similarity histogram with preprocessing

- d adjusting pai duct Fi
methods. We also selected same amount of random bugs and also calculated their and adjusting pairs for product Firefox

cosine similarities to see if we can use cosine similarities to identify duplicates. .
Conclusion:

Cosine similarity histogram for Core

= o With our final approach we had managed to find a pattern such that if a bug pair had
cosine similarity score > 0.3 we can say they are duplicates with very high probability.

If we also include component comparison, this also enhances that probability.

REFERENCES

[1] Bugzilla Main Page, htips://bugzilla.mozilia.org, last accessed 2018/02/01.
[2] Scikit-learn: Unsupervised learning, hitp://scikit-
learn.org/stable/unsupervised learning.html, last accessed 2018/05/09

[3] NTLK Natural Language Processing Tool Kit, hitps://www.nlti.org/, last accessed
2018/05/01

0z 04 06 08
e similarity

Figure 4, Initial cosine similarity
histogram for Core

https://bugzilla.mozilla.org/
https://bugzilla.mozilla.org/
http://scikit-learn.org/stable/unsupervised_learning.html
http://scikit-learn.org/stable/unsupervised_learning.html
http://scikit-learn.org/stable/unsupervised_learning.html
https://www.nltk.org/
https://www.nltk.org/
https://www.nltk.org/

