Effective Material Flow Management for Unilever Foods and Beverages Site (Besan Factory)

Students

Buse Çoğal İlayda Çakıcı Mohamed S. Maarouf Orhan Onur Bumin Özge Beril Okumuş Umurcan Soğancı

Faculty Member(s)

A. Gizem Özbaygın

Company Advisor(s)

Batuhan Öztürk Elif Sarıçam Serdar Baysan

ABSTRACT

The purpose of this project is to design a decision support system that determines the best possible set of routes for raw material collection from suppliers to Besan Besin San. ve Tic. A.Ş., which is Food and Beverages Site of Unilever. The project consists of two main components; a solution method for the planning of collection routes and its implementation in the form of a decision-making tool. When there are changes in demands or in the current set of suppliers, the tool should be flexible enough to produce updated solutions in response to such changes. The mathematical model involves practical restrictions specified by the company. The decision is a coded implementation of the proposed solution method on a userfriendly interface (CPLEX) which outputs a set of collection routes based on userspecified problem parameters.

MATHEMATICAL MODEL

The problem is formulated as a Periodic Vehicle Routing Problem.

Math Model:

Consider a complete directed graph G = (N, A) with $N = \{0, \ldots, n\}$ and $A = \{(i, j) : i, j \in N, j \neq i\}$ where node 0 is the depot and each node in $n \setminus \{0\}$ corresponds to a supplier. Let K be the set of vehicles and D be the set of days within the planning horizon. Also, let c_{ij} be the cost of traversing arc $(i, j), Q_k$ be the capacity of vehicle k, q_i be the weekly amount that needs to be picked up from supplier i, and q_i^d be the maximum amount that can be collected from supplier i on day d. Define the following decision variables:

About Unilever

Unilever is one of the world's leading suppliers of Beauty & Personal Care, Home Care, and Foods & Refreshment products with sales in over 190 countries and reaching 2.5 billion consumers a day. It has 161,000 employees and generated sales of €53.7 billion in 2017. Over half (57%) of the company's footprint is in developing and emerging markets. Unilever has more than 400 brands found in homes all over the world, including Omo, Dove, Knorr, Domestos, Rexona, Hellmann's, Lipton, Algida, Magnum and Axe.

A photo from our first visit to company

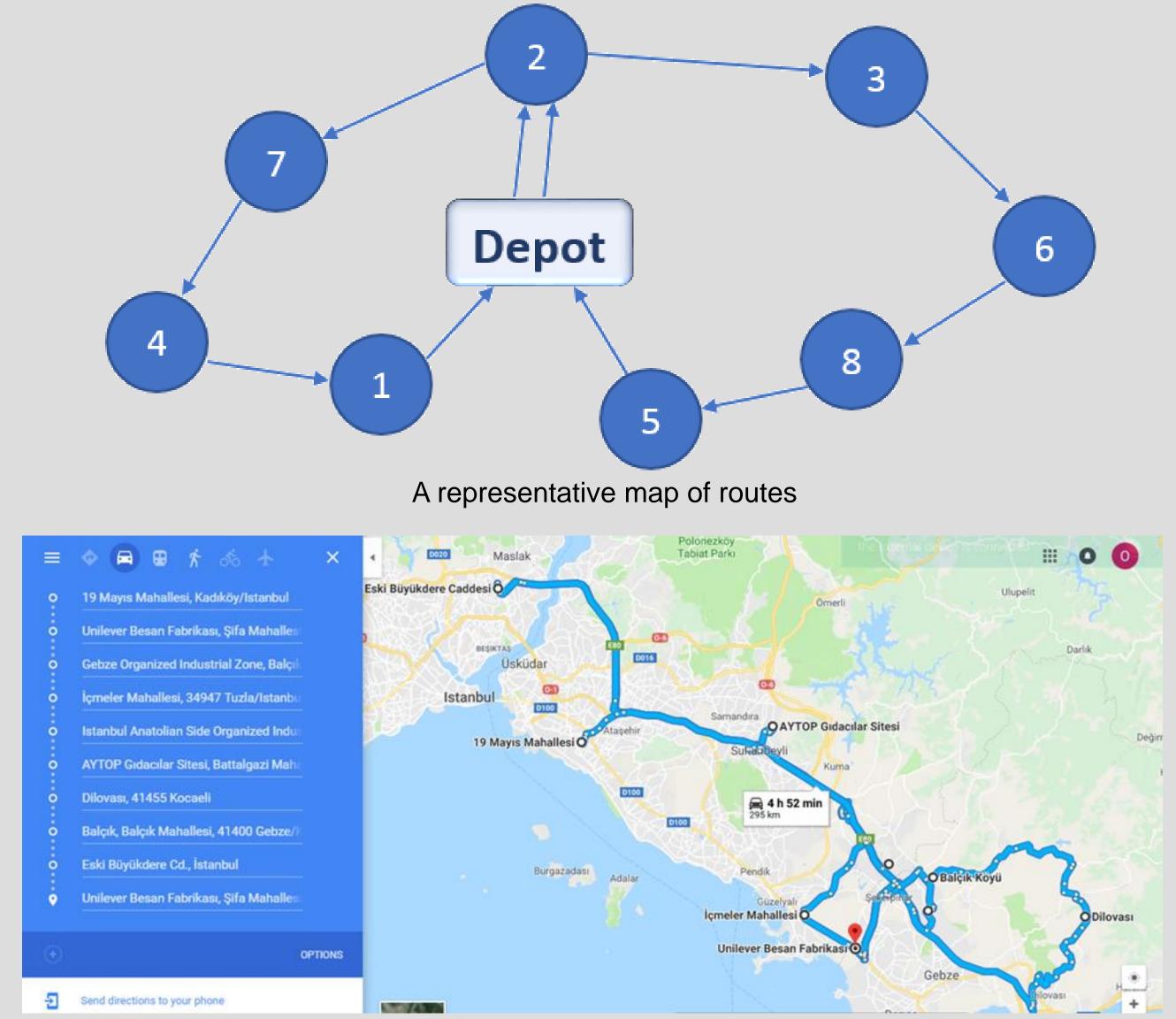
About the Project

collected from supplier i on day d . Define	the following decision variables:
• $x_{ijk}^d = \begin{cases} 1 \text{ if vehicle } k \in K \text{ traverses} \\ 0 \text{ otherwise.} \end{cases}$	arc $(i, j) \in A$ on day $d \in D$,
• $y_{ik}^d = \begin{cases} 1 \text{ if vehicle } k \in K \text{ visits node} \\ 0 \text{ otherwise.} \end{cases}$	$i \in N$ on day $d \in D$,
• f_{ik}^d = the amount collected from sup on day $d \in D$.	plier $i \in N \setminus \{0\}$ by vehicle $k \in K$
We can model the problem as follows:	
$\min\sum_{(i,j)\in A}\sum_{k\in K}\sum_{d\in D}c_{ij}x_{ijk}^d,$	
s.t. $\sum_{j \in N \setminus \{i\}} x_{ijk}^d = y_{ik}^d$	$i\in N,k\in K,d\in D,$
$\sum_{j \in N \setminus \{i\}} x_{ijk}^d - \sum_{j \in N \setminus \{i\}} x_{jik}^d = 0$	$i\in N\setminus\{0\}, k\in K, d\in D,$
$\sum_{i,j\in S} x_{ijk}^d \le S - 1$	$S\subset N\setminus\{0\}, k\in K, d\in D,$
$\sum_{i \in N \setminus \{0\}} f_{ik}^d \le Q_k$	$k\in K, d\in D,$
$f^d_{ik} \le q^d_i y^d_{ik}$	$i\in N\setminus\{0\}, k\in K, d\in D,$
$\sum_{k \in K} f_{ik}^d \le q_i^d$	$i\in N\setminus\{0\}, d\in D,$
$\sum_{k \in K} \sum_{d \in D} f_{ik}^d \ge q_i$	$i \in N \setminus \{0\},$
$x_{ijk}^d \in \{0, 1\}$	$i,j\in N,k\in K,d\in D,$
$y_{ik}^d \in \{0,1\}$	$i\in N,k\in K,d\in D,$
$f_{ik}^d \ge 0$	$i \in N, k \in K, d \in D.$

Unilever's Food and Beverages Site, Besan Besin San. ve Tic. A.Ş., conducts the production of the brands Knorr, Lipton and Carte d'Or in the factory located in Tuzla, İstanbul. The factory uses more than 44,000 tons of raw material per year which is supplied by 125 suppliers located all over Turkey.

The project has two main goals:

- 1. To reduce transportation costs (towards a sustainable economy and environment)
- 2. To increase the efficiency of raw material collection planning process with an optimization application that outputs user-friendly route estimation


IBM ILOG CPLEX

Decision Tool

The proposed model is implemented using IBM/ILOG CPLEX optimization software and integrated with Microsoft Office Excel.

	≪ 🗈 î i i - i z z i s	en en en en en en en en en en en en en e					Hızlı Erişim
💱 Sorun 🔀 🙌 🛛	Değişk 💁 Kesm 📮 🗖	👿 algoritma_deneme.mod	🔲 x değeri 🔀				- 8
	J ^a z ▽	edges (büyüklük 72)	**				^
Amaç değeri 239,963 olan çözüm 🗸 🗸		i	j 4	vehicle (büyüklük 2)	↓ 1D (büyüklük 1)	↓ Değer	
Ad	Değer	8	5	2	1	1	
4 💑 Veri (13)	3	7	4	1	1	1	
2 00 Ven (15)	[29.155 4.662 14.399 57	6	8	2	1	1	
+ ¹ cities	08	5	0	2	1	1	
ID D	1	4	1	1	1	1	
(?) edges	{<0 1> <0 2> <0 3> <0	3	6	2	1	1	
10 K	2	2	7	1	1	1	
u n	8	2	3	2	1	1	
📌 periods	1	1	0	1	1	1	
📑 Q	[22000 22000]	0	2	2	1	1	
💕 q	[[15] [63] [4778] [1] [1	0	2	1	1	1	
📑 qk	[15 63 4778 1 106 82 340	8	7	2	1	0	
	0	8	7	1	1	0	
✓ [₽] suppliers	18	8	6	2	1	0	
★₩ vehicle	12	8	6	1	1	0	
🔺 🍄 Karar değişkenleri (8	5	1	1	0	
📑 f	[[[15] [0]] [[63] [0]] [[0	8	4	2	1	0	
📑 u	[0 0 1 2 4 2 1 3]	8	4	1	1	0	
10 x	[[[0] [0]] [[1] [1]] [[0]	8	3	2	1	0	
≣"у	[[[1] [1]] [[1] [0]] [[1]	8	3	1	1	0	
▲ ② Karar ifadeleri (1) ▷ .o TotalDistance 239.96		8	2	2	1	0	
	ICE 239.90	8	2	1	1	0	
		8	1	2	1	0	
		8	1	1	1	0	
		8	0	2	1	0	
		8	0	1	1	0	
		7	8	2	1	0	
		7	8	-	1	0	

We have successfully designed a mathematical model that adheres well to the problem definition. We have also implemented this math model on CPLEX. After the final stage of implementation, a simulation was performed and we have observed that the transportation cost was significantly reduced.

A snapshot of OPL CPLEX solution window

OBJECTIVE

Decreasing transportation costs by reducing number of trucks dispatched and the distance traveled by them.

A snapshot from Google Maps for the routes represented above

- P. Francis, K. Smilowitz, and M. Tzur. The period vehicle routing problem and its extensions. In B. Golden, S. Raghavan, and E. Wasil, editors, The Vehicle Routing Problem, pages 239–261. Springer, 2008.
- About Unilever. (n.d.). Retrieved November 12, 2017, from <u>https://www.unilever.com/about/who-we-are/about-Unilever/</u>
- IBM Knowledge Center. (n.d.). Retrieved from <u>https://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.6.1/com.ibm.cplex.zo</u> <u>s.help/CPLEX/UsrMan/topics/preface_Z/whatis_Z.html</u>