

This work was supported in part by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690893.

Decentralized Coded Caching in Wireless Networks: Trade-off between Storage and Latency

Antonious M. Girgis¹, Ozgur Ercetin², Mohammed Nafie^{1,3} and Tamer ElBatt^{1,3}

¹WIRELESS Intelligent Network Center (WINC), Nile University, Cairo, Egypt ² Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey ³ Electronics and Communications Dept., Faculty of Engineering, Cairo University, Giza, Egypt

Context and motivation

- The increasing number of wireless devices is leading to rapid evolution of the traffic load.
- Mobile video will generate much of the mobile traffic growth through 2021 [1].

• Caching most popular contents close to user terminals is a promising solution.

[1] Cisco visual networking index: Global mobile data traffic forecast white paper, Feb. 2017.

Context and motivation

 B_1, B_2

 A_1, B_1

 $B_2 \oplus A_1$

kana

 \triangleright An information theoretic view for caching systems [1].

A novel centralized caching scheme for an error-free broadcast channel \blacktriangleright Decentralized placement [2].

The caches of users are filled independently for each other.

 \geq Coded caching concept for interference networks[3]

Cloud Characterization of DoF for 3×3 interference channel with caches at transmitters.

≻Coded Caching in Fog-Radio Access Networks (F-RAN)[4]

Centralized baseband processing at the cloud $+$ Edge processing at ENs equipped with caches. Introducing Normalized Delivery Time (NDT) as a performance metric.

Decentralized coded caching problem for $2 \times K_r$ F-RAN architecture.

[1] M. A. Maddah-Ali and U. Niesen, "Fundamental limits of caching," IEEE Trans. Inf. Theory, 2014.

[2] M. A. Maddah-Ali and U. Niesen, "Decentralized coded caching attains order-optimal memory-rate tradeoff," IEEE/ACM Trans. Netwo., 2015.

[3] M. A. Maddah-Ali and U. Niesen, "Cache-aided interference channels," in IEEE ISIT, 2015.

[4] R. Tandon and O. Simeone, "Cloud-aided wireless networks with edge caching: Fundamental latency trade-offs in fog radio access networks," in IEEE ISIT, 2016.

- A cloud server has a library of N files $W \triangleq \{W_1, \dots, W_N\}$ each of size F bits.
- A set of K_t Edge nodes, EN_1 , \cdots , EN_{K_t} , each is equipped with a cache memory V_i of size $\mu_t NF$ bits.

- ENs are ready to serve requests of K_r users through a Gaussian interference channel.
- User k is equipped with a cache memory Z_k of size $\mu_r N F$ bits.

Cloud

CENS

[Library of N files]

• The cloud is connected to each EN via a fronthaul link of capacity $C_F = r \log(P)$ bits per channel use, where r measures to the multiplexing gain of the fronthaul link.

- Placement Phase: Fill the cache memory of each node at the off-peak hours.
- Delivery Phase: Users' requests are revealed
	- **Fronthaul Transmission:** The cloud sends a message U_i of block length T_F to EN_i over the fronthaul link.
	- Edge Transmission: Each EN_i transmits a message X_i of block length T_E over the wireless channel.
	- **Decoding function:** Each user k can decode the requested file from its cache contents Z_k and the received signals $Y_k(1), \dots, Y_k(T_F)$.

$$
Y_k(t) = \sum_{i=1}^{K_t} h_{ki} X_i(t) + Z_k(t)
$$

• Performance metric: *Normalized Delivery time (NDT)* $\delta = \lim_{P \to \infty} \lim_{F \to \infty} \sup \frac{I}{F / \log(P)}$

T refers to end-to-end latency of transmission.

 $F/\log(P)$ is the delivery time for interference-free, unlimited cache system.

Transmission types

- Serial transmission: Fronthaul and edge transmissions occur consecutively.
	- End-to-end Latency $T = T_F + T_F$.

$$
\delta_S = \delta_F + \delta_E
$$

- Pipelined transmission: Fronthaul and edge transmissions occur *simultaneously*.
	- End-to-end latency $T = \max(T_F, T_F)$.

$$
\delta_P = \max(\delta_F, \delta_E).
$$

Decentralized placement

- Each EN stores independently at random $\mu_t F$ bits from each file.
- Each user stores independently at random $\mu_r F$ bits from each file.

Each file is split into $2^{K_t+K_r}$ fragments. W_{i,S_t,S_r} Fragment of file *j* stored exclusively at $S_t \subset [K_t]$ ENs and $S_r \subset [K_r]$ users.

- Let user one request file A and user two request file B .
- User one wants fragments $A_{0,0}$, $A_{1,0}$, $A_{2,0}$, $A_{12,0}$, $A_{0,2}$, $A_{1,2}$, $A_{12,2}$
- User two wants fragments $B_{0,0}$, $B_{1,0}$, $B_{2,0}$, $B_{12,0}$, $B_{0,1}$, $B_{1,1}$, $B_{12,1}$
- The delivery scheme is divided into five stages.

Cloud

 $h_{11}/B_{0,0}$ - h_{21}

 $\left(\left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right)\right)$

 \bullet

 $(h_{11}h_{22}-h_{12}h_{21})|A_0$

 $(h_1, h_2, -h_1, h_2) | B$

- Let user one request file \vec{A} and user two request file \vec{B} .
- User one wants fragments $A_{0,0}$, $A_{1,0}$, $A_{2,0}$, $A_{12,0}$, $A_{0,2}$, $A_{1,2}$, $A_{12,2}$
- User two wants fragments $B_{0,0}$, $B_{1,0}$, $B_{2,0}$, $B_{12,0}$, $B_{0,1}$, $B_{1,1}$, $B_{12,1}$
- h 2 A0.0 h B0.0 • The delivery scheme is divided into five stages.
	- 1. Delivery of fragments $A_{0,0}$, $B_{0,0}$
	- The cloud implements Zero-forcing beamforming to \blacksquare be transmitted to ENs over the fronthaul links [1].
	- ENs deliver the cloud messages to users over the \blacksquare wireless channel.

$$
\delta_F^{(1)} = \frac{|A_{0,0}|}{r}
$$

$$
\delta_E^{(1)} = |A_{0,0}|
$$

[1] O. Simeone, O. Somekh, H. V. Poor, and S. Shamai, "Downlink multicell processing with limited-backhaul capacity," EURASIP Journal on Advances in Signal Processing, 2009.

$\left(\left(\begin{smallmatrix} \cdot & \cdot \\ \cdot & \cdot \end{smallmatrix}\right)\right)$ **Coded delivery** ¥ $h_{22}\overline{A_{12,0}} - h_{12}\overline{B_{12,0}}$ 2. Delivery of fragments $A_{12,0}$, $B_{12,0}$ $\left(h_{11}h_{22}-h_{12}h_{21}\right)$ $\left[A_{12,0}\right]$ Cloud • ENs apply ZF-beamforming over interference channel $\delta_F^{(2)} = 0$
 $\delta_E^{(2)} = |A_{12,0}|$ $\left(\mathbb{C}_{\mathbb{R}}\right)$ ÷ **DOM: NO** $h_{11}[B_{12,0}]-h_{21}[A_{12,0}]$

 $(h_{11}h_{22}-h_{12}h_{21})B_{12,0}$

- 2. Delivery of fragments $A_{12,0}$, $B_{12,0}$
	- ENs apply ZF-beamforming over interference channel

 $\delta_F^{(2)} = 0$
 $\delta_E^{(2)} = |A_{12,0}|$

- 3. Delivery of fragments $A_{0,2}$, $B_{0,1}$
	- The cloud sends $A_{0,2} \oplus B_{0,1}$.
	- ENs deliver the cloud messages to users over the \blacksquare wireless channel.

$$
\delta_F^{(3)} = \frac{|A_{0,2}|}{r}
$$

$$
\delta_E^{(3)} = |A_{0,2}|
$$

4. Delivery of fragments $A_{1,2}$, $B_{1,1}$, $A_{2,2}$, $B_{2,1}$, $A_{12,2}$, $B_{12,1}$

- 5. Delivery of fragments $A_{1,0}$, $B_{1,0}$, $A_{2,0}$, $B_{2,0}$
- A. Mapping to 2×2 X-channel.
- EN_s apply interference alignment scheme [1] to achieve $DoF = \frac{4}{3}$.

- B. Mapping to MISO broadcast channel.
- Cloud send $A_{1,0}$, $B_{1,0}$ to EN_2 , and $A_{2,0}$, $B_{2,0}$ to EN_1 . \blacksquare
- EN_s apply ZF-beamforming to achieve $DoF = 2$.

Achievable Scheme performance

Theorem: For $2 \times K_r$ F-RAN with decentralized caching placement

$$
\delta_S^{dec} = \begin{cases}\n\delta_F^{(a)} + \delta_E^{(a)} & r < K_r \\
\delta_F^{(b)} + \delta_E^{(b)} & r \ge K_r\n\end{cases}
$$
\n
$$
\delta_P^{dec} = \min \left\{ \max \left(\delta_F^{(a)}, \delta_E^{(a)} \right), \max \left(\delta_F^{(b)}, \delta_E^{(b)} \right) \right\}
$$

$$
\delta_F^{(a)} = \frac{(1 - \mu_t)^2 (1 - \mu_r)}{r \mu_r} \left[1 - (1 - \mu_r)^{K_r} - \frac{K_r}{2} \mu_r (1 - \mu_r)^{K_r - 1} \right]
$$

$$
\delta_F^{(b)} = \frac{(1 - \mu_t)^2 (1 - \mu_r)}{r \mu_r} \left[1 - (1 - \mu_r)^{K_r} - \frac{K_r}{2} \mu_r (1 - \mu_r)^{K_r - 1} \left(\frac{1 - 3\mu_t}{1 - \mu_t} \right) \right]
$$

$$
\delta_E^{(a)} = \frac{(1 - \mu_r)}{\mu_r} \left[1 - (1 - \mu_r)^{K_r} - \left(\frac{K_r}{2} - \mu_t (1 - \mu_t) \right) \mu_r (1 - \mu_r)^{K_r - 1} \right]
$$

$$
\delta_E^{(b)} = \frac{(1 - \mu_r)}{\mu_r} \left[1 - (1 - \mu_r)^{K_r} - \frac{K_r}{2} \mu_r (1 - \mu_r)^{K_r - 1} \right]
$$

Lower bound

Special cases

For $\mu_t = 1$, and/or $r = \infty$: two EN_s have all the library.

$$
S = \frac{(1 - \mu_r)}{\mu_r} \left[1 - (1 - \mu_r)^{K_r} - \frac{K_r}{2} \mu_r (1 - \mu_r)^{K_r - 1} \right]
$$

The NDT of broadcast channel with single antenna [2]

 ϵ

$$
\delta = \frac{(1-\mu_r)}{\mu_r} [1 - (1-\mu_r)^{K_r}]
$$

The achievable NDT is lower than NDT in [2] with term $\frac{K_r}{2}(1-\mu_r)^{K_r}$

Special cases

For $\mu_r = 0$: The caches are available at EN_s only.

Theorem: For pipelined transmission, the decentralized scheme is optimal in region $r \ge (1 - \mu_t^2)$ and $0 < r \le (1 - \mu_t^2)$, $0 < \mu_t \le 0.5$. For serial transmission, the decentralized scheme achieves $\frac{\delta_S^{dec}}{\delta_{\rm s}^*} \leq 3$ in region $r \geq 1$ and $0 < r < 1$, $0 \leq \mu_t \leq \sqrt{2} - 1$

The decentralized scheme is not tight for large cache size ($\mu_t > 0.5$) due to the random placement.

Numerical Results

The performance of the decentralized scheme for the general case

• $K_r = 100$.

• $r=1$.

- The maximum gap is about 10 for pipelined transmission.
- The maximum gap is about 20 for serial transmission.

[2] M. A. Maddah-Ali and U. Niesen, "Decentralized coded caching attains order-optimal memory-rate tradeoff," IEEE/ACM Trans. Netwok., 2015.

Conclusion

- \blacktriangleright Studying the decentralized coded caching for $2 \times K_r$ Fog-Radio Access Networks for pipelined and serial transmissions.
- Deriving lower bound on the minimum NDT for $K_t \times K_r$ Fog-Radio Access Networks for pipelined and serial transmissions.
- Evaluation of the performance of the decentralized scheme.

Extensions:

- Characterization of the NDT for $K_t \times K_r$ F-RAN with decentralized placement.
- Studying the NDT for an F-RAN under nonuniform distribution.