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Problem Motivation: Practical scenario
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Distributed Binary Hypothesis Testing Over Orthogonal
Discrete Memoryless Channels: Model
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Type 2 error exponent definition
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Question: Does a computable characterization exist for the quantity
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− log(β(k,τ,ε))
k ?
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Testing against conditional independence problem (TACI):
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Previous related works:

1 General hypothesis testing problem with a single observer and
rate-limited channel [Ahlswede-Csiszár (1986) and Han (1987)]

2 Optimality of quantize-bin coding scheme for testing against
conditional independence problem with a single helper and
rate-limited channels [Rahman-Wagner (2012)]

3 Optimal T2EE characterization for testing against independence
problem over rate-limited channels

With two observers (special case with a certain Markov relation among
the observed data) [Zhao-Lai (2014)]
With single observer having common and private bit pipes to multiple
detectors [Wigger-Timo (2016)]
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Bounds for the Type 2 error exponent

Lemma

For any bandwidth ratio τ > 0, we have
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θ(τ) for TACI
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Equivalence between TACI and L-helper JSCC problem:
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Lower Bound for θ(τ):

Theorem

θ(τ) ≥ H(V |Z )− R i (τ) where

R i (τ) , inf
WL
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S⊆L

FS ,

FS = H(V |WSc ,Z ) + I (US ;WS |WSc ,V ,Z )− τ
∑
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Cl
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∑
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Proof: Source-channel separation theorem for orthogonal MAC +
Berger-Tung inner bound.
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Tightness of the bounds for L = 1

Lemma

For the TACI problem with L = 1 and bandwidth ratio τ ,

θ(τ) = sup
W

I (V ;W |Z )

such that I (U;W |Z ) ≤ τC ,
(Z ,V )− U −W , |W| ≤ |U|+ 4.
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Proof:

1 For L = 1, the Markov relation among the r.v.’s in the BT inner and
outer bounds match.

2 Applying the BT inner bound, R(τ) is the infimum of R ′ such that

H(V |Z ,W ) ≤ R ′,

I (U;W |V ,Z ) ≤ τC ,
H(V |Z ,W ) + I (U;W |Z ) ≤ τC + R ′

3 Equivalently,

R(τ) = inf
W

max
(
H(V |W ,Z ), H(V |W ,Z ) + I (U;W |Z )− τC

)
, (3)

such that I (U;W |V ,Z ) ≤ τC .
θ(τ) = H(V |Z )− R(τ). (4)
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Proof (cont):

4 We want to show that R(τ) = H(V |W ,Z ) for some W such that
I (U;W |Z ) ≤ τC .

5 If W ∗ achieving the minimum in (3) is such that I (U;W ∗|Z ) ≤ τC ,
then R(τ) = H(V |W ∗,Z ) and
θ(τ) = H(V |Z )− H(V |W ∗,Z ) = I (V ;W ∗|Z ) as required.

6 On the contrary, suppose that the minimum is achieved for a W ∗

such that I (U;W ∗|Z ) > τC .
⇒ R(τ) = H(V |W ∗,Z ) + I (U;W ∗|Z )− τC and
I (U;W ∗|V ,Z ) ≤ τC .

7 We will show that such a W ∗ need not be considered.
8 Sufficient to show that ∃ W̄ s.t.,

(i) I (U; W̄ |Z ) = τC
(ii) H(V |W̄ ,Z ) + I (U; W̄ |Z )− τC ≤ H(V |W ∗,Z ) + I (U;W ∗|Z )− τC

(iii) I (U; W̄ |V ,Z ) ≤ τC
(iv) (Z ,V )− U − W̄
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Proof (cont):

9 Setting W̄ = Wp∗ suffices, where

Wp ,

{
W ∗, with probability 1-p,

constant, with probability p,

and p∗ is chosen such that I (U;Wp∗ |Z ) = τC .

Proof follows from the following facts.

(i) I (U;Wp|Z ) and I (U;Wp|V ,Z ) are decreasing functions of p.
(ii) H(V |Wp,Z ) + I (U;Wp|Z )− τC is a decreasing function of p.
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Proof (cont):

To show that H(V |Wp,Z ) + I (U;Wp|Z )− τC is a decreasing
function of p.

H(V |Wp,Z ) = (1− p)H(V |W ∗,Z ) + pH(V |Z )

Taking derivative with respect to p,

d

dp
H(V |Wp,Z ) = I (V ;W ∗|Z )

Similarly,

d

dp
H(U|Wp,Z ) = I (U;W ∗|Z )

By the DPI for (V ,Z )− U −W ∗,

d

dp
H(V |Wp,Z ) = I (V ;W ∗|Z ) ≤ I (U;W ∗|Z ) =

d

dp
H(U|Wp,Z )
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Proof (cont):

⇒ d

dp
(H(V |Wp,Z ) + I (U;Wp|Z )− τC )

= I (V ;W ∗|Z )− I (U;W ∗|Z ) ≤ 0
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Conclusions and Open questions

Conclusions:

Single-letter lower and upper bounds on the optimal T2EE obtained for
the TACI problem, that is tight for the case of a single observer.
Interestingly, the reliability function of the channel doesn’t seem to play
a role in this characterization.

Open questions:

Is the optimal T2EE independent of ε?
Computable characterization of the optimal T2EE for the general
hypothesis testing problem.
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