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Distributed Binary Hypothesis Testing Over Orthogonal

Discrete Memoryless Channels: Model
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Type 2 error exponent definition

For a given g(5") (or decision region A C Y7 x VK x 2¥) and
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Testing against conditional independence problem (TACI):

Testing against conditional independence problem (TACI):
HO : (U]l_(a R Ufa Vkazk) ~ P{f/gVZ
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Previous related works:

@ General hypothesis testing problem with a single observer and
rate-limited channel [Ahlswede-Csiszar (1986) and Han (1987)]
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rate-limited channels [Rahman-Wagner (2012)]

© Optimal T2EE characterization for testing against independence
problem over rate-limited channels

o With two observers (special case with a certain Markov relation among
the observed data) [Zhao-Lai (2014)]

o With single observer having common and private bit pipes to multiple
detectors [Wigger-Timo (2016)]
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Bounds for the Type 2 error exponent

Lemma

For any bandwidth ratio = > 0, we have
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() for TACI
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Equivalence between TACI and L-helper JSCC problem:

Encoders
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What is the minimum rate R(7) required at encoder £/, ,(-) to

achieve this?
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Lower Bound for 6():

(1) > H(V|Z) — R'(1) where
R'(7) £ inf max F.
(1) inflmax Fs,
Fs = H(V|Wse, Z) + I(Us; Ws|Wse, V, 2) =7 G
1eS
(Z7 V7 U/C7 VVIC)_UI_VVh |W/‘S|U/|+47 /€£ (1)
(Ui We|V, Wse, Z) <7 C. (2)
1eS

Proof: Source-channel separation theorem for orthogonal MAC +
Berger-Tung inner bound. '_'ﬂ?er!él College
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Tightness of the bounds for L =1

Lemma

For the TACI problem with L = 1 and bandwidth ratio T,
0(r) =supl(V; W|2)
w

such that I(U; W|Z) < 7C,
(Z,V)—=U—-W, |W| < |U|+ 4
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Proof:

@ For L =1, the Markov relation among the r.v.'s in the BT inner and
outer bounds match.
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@ For L =1, the Markov relation among the r.v.'s in the BT inner and
outer bounds match.
@ Applying the BT inner bound, R(7) is the infimum of R’ such that

H(V|Z,W) <R,
I(U; W|V,Z) < rC,
H(V|Z, W)+ I(U; W|Z) < 7C + R’

© Equivalently,
R(t) = iw‘max(H(V|W, Z), HV|W,Z)+ I(U, W|Z) — TC), (3)

such that I(U; W|V,Z) < 7C.

0(r) = H(V|Z) = R(7). (4)
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Proof (cont):

© We want to show that R(7) = H(V|W, Z) for some W such that
(U, W|Z) < rC.
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Proof (cont):

© We want to show that R(7) = H(V|W, Z) for some W such that
(U, W|Z) < rC.

@ If W* achieving the minimum in (3) is such that /(U; W*|Z) < 7C,
then R(7) = H(V|W*,Z) and
0(t) = H(V|Z) — H(V|W*,Z) = I(V; W*|Z) as required.

@ On the contrary, suppose that the minimum is achieved for a W*
such that I(U; W*|Z) > 7C.
= R(7) = H\V|W*,Z)+ I(U; W*|Z) — 7C and
I(U; W*|V, Z) < rC.

@ We will show that such a W* need not be considered.

@ Sufficient to show that 3 W s.t.,

(i) 1(U; W|Z)=1C

i) H(VIW,Z)+ I(U; W|Z) = 7C < H(VIW*, Z) + I(U; W*|Z) — 7C
(i) I(U;W|V,Z)<1C .
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Proof (cont):

@ Setting W = W« suffices, where

W, & W, with probability 1-p,
B constant, with probability p,

and p* is chosen such that /(U; W,+|Z) = 7C.
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Proof (cont):

@ Setting W = W« suffices, where

W, & W, with probability 1-p,
B constant, with probability p,

and p* is chosen such that /(U; W,+|Z) = 7C.

Proof follows from the following facts.
(i) I(U; W,|Z) and I(U; W,|V, Z) are decreasing functions of p.
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Proof (cont):

To show that H(V|W,, Z) + I(U; W,|Z) — 7C is a decreasing
function of p.
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Proof (cont):

To show that H(V|W,, Z) + I(U; W,|Z) — 7C is a decreasing
function of p.

H(V| Wy, Z) = (1 - p)H(V|W*, Z) + pH(V|2)
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Proof (cont):

To show that H(V|W,, Z) + I(U; W,|Z) — 7C is a decreasing
function of p.

H(VIWp, Z) = (1 - p)H(VIW", Z) + pH(V|2)
Taking derivative with respect to p,
d

—H(V|W,,2Z)=I(V,W*|Z
SHVIW,.2) = (VW' 2)
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Proof (cont):
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function of p.
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Proof (cont):

- ;: (H(VIW,, Z) + I(U; Wp|Z) — 7C)

= I(V; W¥|Z) — I(U; W*|Z) < 0
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the TACI problem, that is tight for the case of a single observer.
o Interestingly, the reliability function of the channel doesn't seem to play
a role in this characterization.

Open questions:

o Is the optimal T2EE independent of €7
o Computable characterization of the optimal T2EE for the general
hypothesis testing problem.
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