

This work was supported in part by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690893.

Distributed Binary Hypothesis Testing Over Noisy Channels

Sreejith Sreekumar

Department of Electrical and Electronic Engineering Imperial College London

Joint work with Deniz Gündüz.

Acknowledgement: This work received support from the European Union's H2020 Research and Innovation Programme through project TACTILENet: Towards Agile, effiCient, auTonomous and massIvely LargE Network of things (agreement 690893).

Problem Motivation: Practical scenario

Distributed Binary Hypothesis Testing Over Orthogonal Discrete Memoryless Channels: Model

Bandwidth ratio $\tau \triangleq \frac{n}{k}$ $H_0: (U_L, V, Z) \sim P_{U_L, V, Z}$ $H_1: (U_L, V, Z) \sim Q_{U_L, V, Z}$

> Imperial College London

Distributed Binary Hypothesis Testing Over Orthogonal Discrete Memoryless Channels: Model

Bandwidth ratio $\tau \triangleq \frac{n}{k}$ $H_0: (U_{\mathcal{L}}, V, Z) \sim P_{U_{\mathcal{L}}, V, Z}$ $H_1: (U_{\mathcal{L}}, V, Z) \sim Q_{U_{\mathcal{L}}, V, Z}$ Assumption: $P_{U_{\mathcal{L}}Z} = Q_{U_{\mathcal{L}}Z}$ and $P_{VZ} = Q_{VZ}$.

Type 2 error exponent definition

For a given $g^{(k,n)}$ (or decision region $A \subseteq \mathcal{Y}_{\mathcal{L}}^n \times \mathcal{V}^k \times \mathcal{Z}^k$) and encoders $f_1^{(k,n)}, \ldots, f_L^{(k,n)}$,

$$\bar{\alpha}\left(k,n,f_{1}^{(k,n)},\ldots,f_{L}^{(k,n)},g^{(k,n)}\right)\triangleq P_{Y_{\mathcal{L}}^{n}V^{k}Z^{k}}(A^{c})$$

$$\bar{\beta}\left(k,n,f_{1}^{(k,n)},\ldots,f_{L}^{(k,n)},g^{(k,n)}\right)\triangleq Q_{Y_{\mathcal{L}}^{n}V^{k}Z^{k}}(A)$$

Type 2 error exponent definition

For a given $g^{(k,n)}$ (or decision region $A \subseteq \mathcal{Y}_{\mathcal{L}}^n \times \mathcal{V}^k \times \mathcal{Z}^k$) and encoders $f_1^{(k,n)}, \ldots, f_L^{(k,n)}$,

$$\bar{\alpha}\left(k,n,f_{1}^{(k,n)},\ldots,f_{L}^{(k,n)},g^{(k,n)}\right)\triangleq P_{Y_{\mathcal{L}}^{n}V^{k}Z^{k}}(A^{c})$$

$$\bar{\beta}\left(k,n,f_{1}^{(k,n)},\ldots,f_{L}^{(k,n)},g^{(k,n)}\right)\triangleq Q_{Y_{\mathcal{L}}^{n}V^{k}Z^{k}}(A)$$

$$\beta(k,\tau,\epsilon) \triangleq \inf_{\substack{f_1^{(k,n)},\ldots,f_L^{(k,n)}, g^{(k,n)} \\ n \leq \tau k}} \left\{ \begin{array}{l} \bar{\beta}\left(k,n,f_1^{(k,n)},\ldots,f_L^{(k,n)},g^{(k,n)},\epsilon\right) s.t. \\ \bar{\alpha}\left(k,n,f_1^{(k,n)},\ldots,f_L^{(k,n)},g^{(k,n)}\right) \leq \epsilon \end{array} \right\}$$

Imperial College

< □ > < 同 > < 回 > < Ξ > < Ξ

Type 2 error exponent definition

For a given $g^{(k,n)}$ (or decision region $A \subseteq \mathcal{Y}_{\mathcal{L}}^n \times \mathcal{V}^k \times \mathcal{Z}^k$) and encoders $f_1^{(k,n)}, \ldots, f_L^{(k,n)}$,

$$\bar{\alpha}\left(k,n,f_{1}^{(k,n)},\ldots,f_{L}^{(k,n)},g^{(k,n)}\right)\triangleq P_{Y_{\mathcal{L}}^{n}V^{k}Z^{k}}(A^{c})$$

$$\bar{\beta}\left(k,n,f_{1}^{(k,n)},\ldots,f_{L}^{(k,n)},g^{(k,n)}\right)\triangleq Q_{Y_{\mathcal{L}}^{n}V^{k}Z^{k}}(A)$$

$$\beta(k,\tau,\epsilon) \triangleq \inf_{\substack{f_1^{(k,n)},\ldots,f_L^{(k,n)}, g^{(k,n)} \\ n \leq \tau k}} \left\{ \begin{array}{l} \bar{\beta}\left(k,n,f_1^{(k,n)},\ldots,f_L^{(k,n)},g^{(k,n)},\epsilon\right) s.t. \\ \bar{\alpha}\left(k,n,f_1^{(k,n)},\ldots,f_L^{(k,n)},g^{(k,n)}\right) \leq \epsilon \end{array} \right\}$$

Question: Does a computable characterization exist for the quantity $\lim_{k \to \infty} \frac{-\log(\beta(k,\tau,\epsilon))}{k}$?

Testing against conditional independence problem (TACI):

$$\begin{aligned} &H_0: (U_1^k, \dots, U_L^k, V^k, Z^k) \sim P_{U_{\mathcal{L}}VZ}^k \\ &H_1: (U_1^k, \dots, U_L^k, V^k, Z^k) \sim P_{U_{\mathcal{L}}|Z}^k \times P_{V|Z}^k \times P_Z^k \\ &\Rightarrow (Y_1^n, \dots, Y_L^n, V^k, Z^k) \sim P_{Y_{\mathcal{L}}^n|Z^k} \times P_{V|Z}^k \times P_Z^k \end{aligned}$$

Imperial College London

Image: Image:

 General hypothesis testing problem with a single observer and rate-limited channel [Ahlswede-Csiszár (1986) and Han (1987)]

Image: Image:

- General hypothesis testing problem with a single observer and rate-limited channel [Ahlswede-Csiszár (1986) and Han (1987)]
- Optimality of quantize-bin coding scheme for testing against conditional independence problem with a single helper and rate-limited channels [Rahman-Wagner (2012)]

- General hypothesis testing problem with a single observer and rate-limited channel [Ahlswede-Csiszár (1986) and Han (1987)]
- Optimality of quantize-bin coding scheme for testing against conditional independence problem with a single helper and rate-limited channels [Rahman-Wagner (2012)]
- Optimal T2EE characterization for testing against independence problem over rate-limited channels
 - With two observers (special case with a certain Markov relation among the observed data) [Zhao-Lai (2014)]

- General hypothesis testing problem with a single observer and rate-limited channel [Ahlswede-Csiszár (1986) and Han (1987)]
- Optimality of quantize-bin coding scheme for testing against conditional independence problem with a single helper and rate-limited channels [Rahman-Wagner (2012)]
- Optimal T2EE characterization for testing against independence problem over rate-limited channels
 - With two observers (special case with a certain Markov relation among the observed data) [Zhao-Lai (2014)]
 - With single observer having common and private bit pipes to multiple detectors [Wigger-Timo (2016)]

Lemma

For any bandwidth ratio
$$\tau > 0$$
, we have
(i) $\limsup_{k \to \infty} \frac{\log(\beta(k,\tau,\epsilon))}{k} \le -\theta(\tau), \forall \epsilon \in (0,1).$
(ii) $\limsup_{\epsilon \to 0} \liminf_{k \to \infty} \frac{\log(\beta(k,\tau,\epsilon))}{k} \ge -\theta(\tau).$
where

$$\theta(\tau) \triangleq \sup_{k} \theta(k,\tau)$$
$$\theta(k,\tau) \triangleq \sup_{\substack{f_1^{(k,n)}, \dots, f_L^{(k,n)} \\ n \leq \tau k}} \frac{D(P_{Y_{\mathcal{L}}^n V^k Z^k} || Q_{Y_{\mathcal{L}}^n V^k Z^k})}{k}$$

Imperial College London

・ロト ・日下 ・ 日下

 θ

$$\begin{aligned} (\tau) &= \sup_{\substack{k, f_1^{(k,n)}, \dots, f_L^{(k,n)} \\ n \leq \tau k}} \frac{D(P_{Y_L^n V^k Z^k} || Q_{Y_L^n V^k Z^k})}{k} \\ &= \sup_{\substack{k, f_1^{(k,n)}, \dots, f_L^{(k,n)} \\ n \leq \tau k}} \frac{I(Y_L^n; V^k | Z^k)}{k} \\ &= H(V|Z) - \inf_{\substack{k, f_1^{(k,n)}, \dots, f_L^{(k,n)} \\ n \leq \tau k}} \frac{H(V^k | Y_L^n, Z^k)}{k} \end{aligned}$$

Imperial College London

2

▲口> ▲圖> ▲屋> ▲屋>

Equivalence between TACI and L-helper JSCC problem:

Goal: To reconstruct V^k losslessly.

What is the minimum rate $R(\tau)$ required at encoder $f_{L+1}^k(\cdot)$ to achieve this?

Equivalence between TACI and L-helper JSCC problem:

Goal: To reconstruct V^k losslessly.

What is the minimum rate $R(\tau)$ required at encoder $f_{L+1}^k(\cdot)$ to achieve this?

$$R(\tau) = \inf_{\substack{k, \ f_1^{(k,n)}, \dots, f_L^{(k,n)} \\ n \leq \tau k}} \frac{H(V^k | Y_{\mathcal{L}}^n, Z^k)}{k} \text{ s.t}$$
$$(Z^k, V^k) - U_l^k - X_l^n - Y_l^n, \ l \in \mathcal{L}.$$
$$\theta(\tau) = H(V|Z) - R(\tau)$$

Lower Bound for $\theta(\tau)$:

Theorem

$$\begin{aligned} \theta(\tau) &\geq H(V|Z) - R^{i}(\tau) \text{ where} \\ R^{i}(\tau) &\triangleq \inf_{W_{\mathcal{L}}} \max_{S \subseteq \mathcal{L}} F_{S}, \\ F_{S} &= H(V|W_{S^{c}}, Z) + I(U_{S}; W_{S}|W_{S^{c}}, V, Z) - \tau \sum_{l \in S} C_{l} \\ (Z, V, U_{l^{c}}, W_{l^{c}}) - U_{l} - W_{l}, |W_{l}| \leq |\mathcal{U}_{l}| + 4, \ l \in \mathcal{L} \\ I(U_{\mathcal{L}}; W_{S}|V, W_{S^{c}}, Z) \leq \tau \sum_{l \in S} C_{l}. \end{aligned}$$
(1)

September, 2018

10 / 19

Proof: Source-channel separation theorem for orthogonal MAC + Berger-Tung inner bound.

Lemma

For the TACI problem with L = 1 and bandwidth ratio τ ,

$$egin{aligned} & heta(au) = \sup_W I(V;W|Z) \ & such that \ I(U;W|Z) \leq au C, \ & (Z,V) - U - W, \ & |\mathcal{W}| \leq |\mathcal{U}| + 4. \end{aligned}$$

Imperial College

11 / 19

September, 2018

Image: A matrix and A matrix

For L = 1, the Markov relation among the r.v.'s in the BT inner and outer bounds match.

Image: A matrix and a matrix

Proof:

- For L = 1, the Markov relation among the r.v.'s in the BT inner and outer bounds match.
- **2** Applying the BT inner bound, $R(\tau)$ is the infimum of R' such that

$$egin{aligned} & \mathcal{H}(V|Z,W) \leq R', \ & I(U;W|V,Z) \leq au C, \ & \mathcal{H}(V|Z,W) + I(U;W|Z) \leq au C + R' \end{aligned}$$

Image: Image:

Proof:

- For L = 1, the Markov relation among the r.v.'s in the BT inner and outer bounds match.
- **2** Applying the BT inner bound, $R(\tau)$ is the infimum of R' such that

$$egin{aligned} & \mathcal{H}(\mathcal{V}|\mathcal{Z},\mathcal{W}) \leq \mathcal{R}', \ & \mathcal{I}(\mathcal{U};\mathcal{W}|\mathcal{V},\mathcal{Z}) \leq au \mathcal{C}, \ & \mathcal{H}(\mathcal{V}|\mathcal{Z},\mathcal{W}) + \mathcal{I}(\mathcal{U};\mathcal{W}|\mathcal{Z}) \leq au \mathcal{C} + \mathcal{R}' \end{aligned}$$

Equivalently,

 $R(\tau) = \inf_{W} \max(H(V|W,Z), \ H(V|W,Z) + I(U;W|Z) - \tau C), \ (3)$ such that $I(U;W|V,Z) \le \tau C.$ $\theta(\tau) = H(V|Z) - R(\tau).$ (4)

• We want to show that $R(\tau) = H(V|W, Z)$ for some W such that $I(U; W|Z) \le \tau C$.

- We want to show that $R(\tau) = H(V|W, Z)$ for some W such that $I(U; W|Z) \le \tau C$.
- If W^* achieving the minimum in (3) is such that $I(U; W^*|Z) \le \tau C$, then $R(\tau) = H(V|W^*, Z)$ and $\theta(\tau) = H(V|Z) - H(V|W^*, Z) = I(V; W^*|Z)$ as required.

< □ > < 同 > < 回 > < Ξ > < Ξ

- We want to show that $R(\tau) = H(V|W, Z)$ for some W such that $I(U; W|Z) \le \tau C$.
- If W^* achieving the minimum in (3) is such that $I(U; W^*|Z) \le \tau C$, then $R(\tau) = H(V|W^*, Z)$ and $\theta(\tau) = H(V|Z) - H(V|W^*, Z) = I(V; W^*|Z)$ as required.
- On the contrary, suppose that the minimum is achieved for a W* such that I(U; W*|Z) > τC.
 ⇒ R(τ) = H(V|W*, Z) + I(U; W*|Z) τC and I(U; W*|V, Z) ≤ τC.

< □ > < 同 > < 回 > < 回

- We want to show that $R(\tau) = H(V|W, Z)$ for some W such that $I(U; W|Z) \le \tau C$.
- If W^* achieving the minimum in (3) is such that $I(U; W^*|Z) \le \tau C$, then $R(\tau) = H(V|W^*, Z)$ and $\theta(\tau) = H(V|Z) - H(V|W^*, Z) = I(V; W^*|Z)$ as required.
- On the contrary, suppose that the minimum is achieved for a W^* such that $I(U; W^*|Z) > \tau C$. $\Rightarrow R(\tau) = H(V|W^*, Z) + I(U; W^*|Z) - \tau C$ and $I(U; W^*|V, Z) \le \tau C$.
- **\bigcirc** We will show that such a W^* need not be considered.

- We want to show that $R(\tau) = H(V|W, Z)$ for some W such that $I(U; W|Z) \le \tau C$.
- If W^* achieving the minimum in (3) is such that $I(U; W^*|Z) \le \tau C$, then $R(\tau) = H(V|W^*, Z)$ and $\theta(\tau) = H(V|Z) - H(V|W^*, Z) = I(V; W^*|Z)$ as required.
- On the contrary, suppose that the minimum is achieved for a W^* such that $I(U; W^*|Z) > \tau C$. $\Rightarrow R(\tau) = H(V|W^*, Z) + I(U; W^*|Z) - \tau C$ and $I(U; W^*|V, Z) \le \tau C$.
- **\bigcirc** We will show that such a W^* need not be considered.

9 Setting $\overline{W} = W_{p^*}$ suffices, where

$$W_{p} \triangleq egin{cases} W^{*}, & ext{with probability 1-p}, \ ext{constant}, & ext{with probability p}, \end{cases}$$

and p^* is chosen such that $I(U; W_{p^*}|Z) = \tau C$.

• • • • • • • • • • • •

9 Setting $\overline{W} = W_{p^*}$ suffices, where

$$W_{p} \triangleq \begin{cases} W^{*}, & \text{with probability 1-p,} \\ \text{constant,} & \text{with probability p,} \end{cases}$$

and p^* is chosen such that $I(U; W_{p^*}|Z) = \tau C$. Proof follows from the following facts.

Image: A math a math

9 Setting $\overline{W} = W_{p^*}$ suffices, where

$$W_{p} \triangleq egin{cases} W^{*}, & ext{with probability 1-p}, \\ ext{constant}, & ext{with probability p}, \end{cases}$$

and p^* is chosen such that $I(U; W_{p^*}|Z) = \tau C$. Proof follows from the following facts.

(i) $I(U; W_p|Z)$ and $I(U; W_p|V, Z)$ are decreasing functions of p.

Imperial College

14 / 19

September, 2018

9 Setting $\bar{W} = W_{p^*}$ suffices, where

$$W_{p} \triangleq egin{cases} W^{*}, & ext{with probability 1-p}, \ ext{constant}, & ext{with probability p}, \end{cases}$$

and p^* is chosen such that $I(U; W_{p^*}|Z) = \tau C$. Proof follows from the following facts.

(i) *I*(*U*; *W_p*|*Z*) and *I*(*U*; *W_p*|*V*, *Z*) are decreasing functions of *p*.
(ii) *H*(*V*|*W_p*, *Z*) + *I*(*U*; *W_p*|*Z*) − *τC* is a decreasing function of *p*.

Imperial College

14 / 19

September, 2018

To show that $H(V|W_p, Z) + I(U; W_p|Z) - \tau C$ is a decreasing function of p.

Imperial College

To show that $H(V|W_p, Z) + I(U; W_p|Z) - \tau C$ is a decreasing function of p.

 $H(V|W_p, Z) = (1-p)H(V|W^*, Z) + pH(V|Z)$

< ロ > < 同 > < 三 > < 三

Imperial College

To show that $H(V|W_p, Z) + I(U; W_p|Z) - \tau C$ is a decreasing function of p.

 $H(V|W_{p},Z) = (1-p)H(V|W^{*},Z) + pH(V|Z)$

Taking derivative with respect to p,

$$\frac{d}{dp}H(V|W_p,Z)=I(V;W^*|Z)$$

< □ > < 同 > < 回 > < Ξ > < Ξ

To show that $H(V|W_p, Z) + I(U; W_p|Z) - \tau C$ is a decreasing function of p.

 $H(V|W_{p},Z) = (1-p)H(V|W^{*},Z) + pH(V|Z)$

Taking derivative with respect to p,

$$\frac{d}{dp}H(V|W_p,Z)=I(V;W^*|Z)$$

Similarly,

$$\frac{d}{dp}H(U|W_p,Z)=I(U;W^*|Z)$$

September, 2018 16 / 19

(日) (同) (三) (三)

To show that $H(V|W_p, Z) + I(U; W_p|Z) - \tau C$ is a decreasing function of p.

$$H(V|W_{p},Z) = (1-p)H(V|W^{*},Z) + pH(V|Z)$$

Taking derivative with respect to p,

$$\frac{d}{dp}H(V|W_p,Z)=I(V;W^*|Z)$$

Similarly,

$$\frac{d}{dp}H(U|W_p,Z)=I(U;W^*|Z)$$

By the DPI for $(V, Z) - U - W^*$,

$$\frac{d}{dp}H(V|W_p, Z) = I(V; W^*|Z) \le I(U; W^*|Z) = \frac{d}{dp}H(U|W_p, Z)$$

$$\Rightarrow \frac{d}{dp} \left(H(V|W_p, Z) + I(U; W_p|Z) - \tau C \right)$$
$$= I(V; W^*|Z) - I(U; W^*|Z) \leq 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Imperial College London

Image: Image:

• Single-letter lower and upper bounds on the optimal T2EE obtained for the TACI problem, that is tight for the case of a single observer.

Imperial College

18 / 19

September, 2018

- Single-letter lower and upper bounds on the optimal T2EE obtained for the TACI problem, that is tight for the case of a single observer.
- Interestingly, the reliability function of the channel doesn't seem to play a role in this characterization.

- Single-letter lower and upper bounds on the optimal T2EE obtained for the TACI problem, that is tight for the case of a single observer.
- Interestingly, the reliability function of the channel doesn't seem to play a role in this characterization.

Open questions:

- Single-letter lower and upper bounds on the optimal T2EE obtained for the TACI problem, that is tight for the case of a single observer.
- Interestingly, the reliability function of the channel doesn't seem to play a role in this characterization.

Open questions:

• Is the optimal T2EE independent of ϵ ?

- Single-letter lower and upper bounds on the optimal T2EE obtained for the TACI problem, that is tight for the case of a single observer.
- Interestingly, the reliability function of the channel doesn't seem to play a role in this characterization.

Open questions:

- Is the optimal T2EE independent of ϵ ?
- Computable characterization of the optimal T2EE for the general hypothesis testing problem.

THANKS FOR THE ATTENTION !

Sreejith Sreekumar (ICL)

September, 2018 19 / 19