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Problem Motivation

Distributed Statistical Inference problems- data indirectly available
to the statistician.

Data may contain sensitive information irrelevant for given
inference task.

Trade-off exists between performance and privacy.
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Examples

Social Media

Online shopping
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Hypothesis Testing (HT)

Method of statistical inference to decide between different
possible candidates based on available data.

Simple Binary HT:

Null Hypothesis (H0)

Alternate Hypothesis (H1)

Examples:

Weather prediction:

H0 : Rain today, H1 : No rain today.

Testing probability distribution:

H0 : X ∼ PX , H1 : X ∼ QX .
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Performance metrics:

H0 : X ∼ PX , H1 : X ∼ QX .
True hypothesis: H ∈ {0,1}, Decision rule: g(x)

Output of HT: Ĥ ∈ {0,1}.

Type 1 and Type 2 error probabilities:
α(g(x)) = P(Ĥ = 1|H = 0),
β(g(x)) = P(Ĥ = 0|H = 1).

Bayesian Approach: Priors known.

P(H = 0) = µ0, P(H = 1) = µ1, µ0 + µ1 = 1,

min
{g(x)}

µ0α(g(x)) + µ1β(g(x)).

Neyman-Pearson Approach: Priors unknown.

min
{g(x)}

β(g(x)) such that α(g(x)) ≤ ε.
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Optimal Test: Neyman-Pearson framework

Neyman-Pearson Test:
Optimal Decision rule: g∗(x) = 1

(
log
(

PX (x)
QX (x)

)
> τ

)
, τ ∈ R.

Large deviation regime:
X n = (X1, . . . ,Xn)- n i.i.d. samples of data available.

H0 : X n ∼
n∏

i=1

PX , H1 : X n ∼
n∏

i=1

QX .

Type 2 error exponent(T2EE):

κ(ε) = max
g(n)

− log(βn)

n
s.t. αn ≤ ε.

Stein-Chernoff Lemma:

κ(ε) = D(PX ||QX ), ∀ ε(0,1),

D(PX ||QX ) :=
∑
x∈X

PX (x) log
(

PX (x)

QX (x)

)
.
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Model:

Encoder Detector

Encoder observes Un and sends M to the detector.
Detector observes V n and performs following HT using M and V n.

H0 : (Un,V n) ∼
n∏

i=1

PUV

H1 : (Un,V n) ∼
n∏

i=1

QUV

Private data Sn correlated with (Un,V n) needs to be protected.
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Metrics of Privacy

Equivocation or Information Leakage:
1
n H(Sn|M,V n,H = i) or 1

n I(Sn; M|V n,H = i) , i ∈ {0,1}.
Average distortion:

Given distortion measure d : S × Ŝ → [0,Dm],

inf
PŜn|M,Vn

E
(

d(Sn, Ŝn)
)
,

d(sn, ŝn) :=
1
n

n∑
i=1

d(si , ŝi )
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d(sn, ŝn) :=
1
n

n∑
i=1

d(si , ŝi )
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Related work:

Distributed HT in rate-limited settings

Error exponent- Ahlswede and Csiszár [1986] and Han [1987].

Testing and lossy data compression-Katz, Piantinada and Debbah
[2017].

Noisy Channel-Sreekumar and Gündüz [2017].

Multiple detectors and Multi-hop relay setting- Salehkaleiber and
Wigger [2017].

Error exponents via Channel detection codes- Weinberger and
Kochman [2017].
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Related work: HT under privacy constraints

Direct HT under mutual information leakage constraint- Liao,
Sankar, Tan and Calmon [2016].

Distributed HT under mutual information leakage constraint- Amor,
Gilani, Salehkalaibar and Tan [2018].

Data is processed through a privacy mechanism before it is
observed by the encoder.

Privacy mechanism adds noise to increase privacy of sensitive
information.

Information leakage measured as mutual information between input
(data) and output of privacy mechanism.

Results restricted to memoryless privacy mechanisms.
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Rate- Error Exponent- Equivocation Trade-off

Definition

Re(ε) : Closure of the set of all (R, κ,Ω0,Ω1) tuples such that

∃ f (n) : Un → {PM|Un}, M =
[
enR

]
,

g(n) : [enR]× Vn → {PĤ|M,V n},

such that

lim inf
n→∞

−
log
(
β
(
f (n),g(n)))
n

≥ κ, α
(

f (n),g(n)
)
≤ ε,

lim inf
n→∞

1
n

H(Sn|M,V n,H = Hi) ≥ Ωi , i = 0,1.
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Optimal Trade-off: Single-letter characterization

Testing Against Independence:

PSUV = PS|UV PUV , QSUV = QS|UV PUPV .

Theorem

(R, κ,Ω0,Ωmin) ∈ Re(0) iff ∃ an auxiliary r.v. W such that the Markov
chain (S,V )− U −W is satisfied and

R ≥ IP(W ; U),

κ ≤ IP(W ; V ),

Ω0 ≤ HP(S|W ,V ),

where PSUVW := PS|UV PUV PW |U and Ωmin := HQ(S|U,V ).
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An Example: Perfect Privacy

S = U = {0,1,2,3}, V = {0,1},

PSU = 0.125 ∗


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 ,PV |U =


1 0
0 1
1 0
0 1


PSUV = PSUPV |U , QSUV = PSUPV .

HP(U) = HQ(U) = HP(S) = HQ(S) = 2 bits.

Hypothesis test:
H0 : (Un,V n) ∼

∏n
i=1 PUV H1 : (Un,V n) ∼

∏n
i=1 PUPV .

W = U mod 2⇒ HP(S|W ,V ) = 2 bits,

IP(U; W ) = 1, IP(V ; W ) = 1 bit,

i.e., (1,1,2,1) ∈ Re(0).
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Proof: Achievability

Coding scheme:

1 Quantize Un to Cw := {W n(k), k ∈ [1 : 2nR]}.
Encoder f (n) looks for index M in the codebook such that
(Un,W n(M)) is typical.

2 Encoder sends index M if step 1 succeeds, else sends error
message M = 0.

3 If M 6= 0 and (W n(M),V n) is typical, detector declares H0, else H1.
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Analysis of Type 1 and Type 2 error probabilities:

Type 1 error probability:
αn → 0 by Covering lemma (if R > IP(U; W )) and Markov Lemma.

Type 2 error exponent (T2EE):

βn ≤ e−nθ+o(n),

θ := min
PŨṼ W̃ :

PŨW̃=PUW ,
PṼ W̃=PVW

D(PŨṼ W̃ ||PUW PV )

≥ min
PṼ W̃ : PṼ W̃=PVW

D(PṼ W̃ ||PW PV ) := IP(V ; W ).

1
n

H(Sn|M,V n,H = 0) ≥ 1
n

H(Sn|W n(M),V n,H = 0)

≥ HP(S|W ,V )− o(n)

1
n

H(Sn|M,V n,H = 1) ≥ 1
n

H(Sn|Un,V n,H = 1)

≥ HQ(S|U,V )− o(n)
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Proof:Weak Converse (ε→ 0)

Given decision region An for H0 such that εn → 0,

D (PMV n ||QMV n )

≥ PMV n (An) log
(

PMV n (An)

QMV n (An)

)
+ PMV n (Ac

n) log
(

PMV n (Ac
n)

QMV n (Ac
n)

)
(DPI)

≥ −H(εn)− (1− εn) log(β(n, εn))

lim sup
n→∞

− log(β(n,0))

n
≤ lim sup

n→∞
sup
f (n)

1
n

D (PMV n ||QMV n )

= lim sup
n→∞

sup
f (n)

1
n

IP(M; V n) (since QMV n = PMPV n )

= HP(V )− lim inf
n→∞

inf
f (n)

1
n

HP(V n|M)
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Proof: Weak Converse (ε→ 0)

1
n

HP(V n|M) =
1
n

n∑
i=1

HP(Vi |M,V i−1)

= HP(VT |WT ,T )
(

T ∼ Unif [1 : n], Wi = (M,V i−1)
)

= HP(V |W ) (W = (WT ,T )) .

Also,

nR ≥ HP(M) ≥ IP(M; Un) =
n∑

i=1

IP(M,U i−1; Ui)

≥
n∑

i=1

IP(M,V i−1; Ui)
(

since (M,V i−1)− (M,U i−1)− Ui

)
= nIP(WT ,T ; UT ) = nIP(W ; U).
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Proof: Converse

1
n

H(Sn|M,V n,H = 0) =
1
n

n∑
i=1

H(Si |M,V n,Si−1,H = 0)

≤ 1
n

n∑
i=1

H(Si |M,V i−1,Vi ,H = 0)

= H(ST |WT ,VT ,T ,H = 0)

= HP(S|W ,V ).

Note that Markov chain V − U −W holds.

Sreejith Sreekumar (ICL) Distributed Hypothesis Testing September, 2018 22 / 42



Optimal Trade-off: Single-letter characterization

Zero-rate case:

lim
n→∞

log(|M|)
n

= 0.

Motivated by low bandwidth and low power applications like IoT
and sensor networks.

H0 : (Un,V n) ∼
∏n

i=1 PUV , H1 : (Un,V n) ∼
∏n

i=1 QUV

Proposition

For ε ∈ (0,1), (0, κ,Ω0,Ω1) ∈ Re(ε) iff

κ ≤ min
PŨṼ∈T1(PU ,PV )

D(PŨṼ ||QUV ),

Ω0 ≤ HP(S|V ),

Ω1 ≤ HQ(S|V ),

where T1(PU ,PV ) := {PŨṼ ∈ T (U × V) : PŨ = PU , PṼ = PV}.
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Coding scheme: Achievability

1 Encoder sends M = 1 if Un is typical, else it sends M = 0.
2 If M = 1 and V n is typical, detector declares H0, else H1.

Type 1 error probability:
αn → 0 by Weak law of large numbers.

Type 2 error exponent:

βn ≤ e−nθ0+o(n),

θ0 := min
PŨṼ :

PŨ=PU ,
PṼ=PV

D(PŨṼ ||QUV ).
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Proof:

lim
n→∞

log(|M|)
n

= 0⇒ lim
n→∞

1
n

HP(M) = 0.

1
n

H(Sn|M,V n,H = Hi) ≥
1
n

H(Sn|V n,H = Hi)−
1
n

H(M)

≥ H(S|V ,H = Hi)− γn,

Converse:

1
n

H(Sn|M,V n,H = Hi ) ≤
1
n

H(Sn|V n,H = Hi ) = H(S|V ,H = Hi ).

Converse follows from existing results on distributed HT without
privacy constraint.
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General result: Single letter Inner bound

Theorem

For ε ∈ (0,1), (R, κ,Ω0,Ω1) ∈ Re(ε) if ∃ an auxiliary r.v. W such that
(V ,S)− U −W and

R ≥ IP(W ; U|V ),

κ ≤ κ∗(PW |U ,R),

Ω0 ≤ HP(S|W ,V ),

Ω1 ≤ 1 (PU = QU) HQ′(S|W ,V ) + 1 (PU 6= QU) HQ(S|V ),

where κ∗(PW |U ,R) = min
(
E1(PW |U), E2(R,PW |U)

)
,

PSUVW = PSUV PW |U , QSUVW = QSUV PW |U , Q′SUVW = QSV |UPUPW |U .
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Remarks about Inner bound :

Tight for Testing Against Independence and Zero-rate case.

Compression rate is reduced using binning at the encoder and
using V n as side-information.

Extra factor E2(R,PW |U) in T2EE (due to binning).

Privacy achieved under alternate hypothesis depends on whether
PU = QU or PU 6= QU .
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Average distortion as a Privacy measure

Average distortion:

E
(

d(Sn, Ŝn)
)
,

d(sn, ŝn) :=
1
n

n∑
i=1

d(si , ŝi)

An additive measure as opposed to equivocation.

Information-theoretic security:
Rate distortion problem for communication system with a
secondary decoder to be hindered- Yamamoto [1989].

Rate-distortion theory of secrecy systems- Schieler and Cuff [2014].
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Rate- Error Exponent-Distortion Trade-off

Definition
Rd (ε) : Closure of the set of all (R, κ,∆0,∆1) tuples such that

∃ f (n) : Un → {PM|Un}, M =
[
enR

]
,

g(n) : [enR]× Vn → {PĤ|M,V n}

such that

lim sup
n→∞

log
(
β
(
f (n),g(n)))
n

≤ −κ, α
(

f (n),g(n)
)
≤ ε,

lim inf
n→∞

inf
g(n)

r

E
[
d
(

Sn, Ŝn
)
|H = Hi

]
≥ ∆i , i = 0,1.

where g(n)
r : [enR]× Vn → {PŜn|M,V n} and PŜn|M,V n denotes an arbitrary

conditional probability distribution.
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Optimal Trade-off: Single-letter characterization

Testing Against Independence:
PSUV = PS|UV PUV , QSUV = QS|UV PUPV .

Theorem

(R, κ,∆0,∆min) ∈ Rd (0) iff ∃ an auxiliary r.v. W such that

R ≥ IP(W ; U),

κ ≤ IP(W ; V ),

∆0 ≤ min
φ(·,·,·)

EP [d (S, φ(W ,V ))] ,

for some deterministic function φ :W ×V → Ŝ,
PSUVW := PS|UV PUV PW |U and ∆min := minφ EQ [d (S, φ(U,V ))].
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Coding scheme: Achievability

Channel Resolvability [Han-Verdu] or Soft-covering Lemma [Cuff]

Lemma
Given a joint distribution PUW , let Cn

W be a random codebook of
sequences W n(m), m ∈ [1 : 2nR] each drawn independently according
to
∏n

i=1 PW . Let

PMUn (m,un) ,
1

2nR

n∏
i=1

PU|W (ui |Wi(m)).

If R > I(U; W ), then,

E

[
‖PUn −

n∏
i=1

PU‖

]
(n)−−→ 0
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Achievability:

1 Choose codebook Cw = {wn(k), k ∈ [1 : 2nR]} satisfying
Soft-covering lemma.

2 Stochastic encoding: If Un is typical, encoder chooses M = m
with probability

PEu (m|un, Cn
u ) ,

∏n
i=1 PU|W (ui |wi(m))∑

m′
∏n

i=1 PU|W (ui |wi(m′)))
,

else sends M = 0.
3 If M 6= 0 and (W n(M),V n) is typical, detector declares H0, else

H1.
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Converse:

min
g(n)

r

E
[
d
(

Sn, Ŝn
)
|H = H0

]
= min
{φ(m,vn,i)}

E

[
1
n

n∑
i=1

d (Si , φ(M,V n, i)) |H = H0

]

= min
{φ(·,·,·)}

E

[
1
n

n∑
i=1

d
(
Si , φ(Wi ,Vi ,V n

i+1, i)
)
|H = H0

]

≤ min
{φ(wi ,vi ,i)}

E

[
1
n

n∑
i=1

d (Si , φ(Wi ,Vi , i)) |H = H0

]
= min
{φ(·,·,·)}

E [d (ST , φ(WT ,VT ,T )) |H = H0]

= min
{φ(w ,v)}

EP [d (S, φ(W ,V ))] .
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Optimal Trade-off: Single-letter characterization

Zero-rate case:

Theorem
For ε ∈ (0,1), (0, κ,∆0,∆1) ∈ Rd (ε) iff,

κ ≤ min
PŨṼ∈T1(PU ,PV )

D(PŨṼ ||QUV ),

∆0 ≤ min
φ′(·)

EP
[
d
(
S, φ′(V )

)]
,

∆1 ≤ min
φ′(·)

EQ
[
d
(
S, φ′(V )

)]
,

where, φ′ : V → Ŝ is a deterministic function and

T1(PU ,PV ) = {PŨṼ ∈ T (U × V) : PŨ = PU , PṼ = PV}.
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Coding scheme: Achievability

Lemma

Let PXY and QXY denote two probability distributions on r.v.’s X and Y .
Let PX nY n =

∏n
i=1 PXY and QX nY n =

∏n
i=1 QXY . For δ > 0, define

IX (xn, δ) , 1

(
xn /∈ T n

[PX ]δ

)
.

If PX 6= QX , then for δ > 0 sufficiently small,

‖QY n −QY n|IX (X n,δ)=1‖
(n)−−→ 0,

If PX = QX , then the following holds for any δ > 0,

‖QY n −QY n|IX (X n,δ)=0‖
(n)−−→ 0,

‖PY n − PY n|IX (X n,δ)=0‖
(n)−−→ 0.
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Coding scheme: Converse

min
g(n)

r

E
[
d
(

Sn, Ŝn
)
|H = H0

]
≤ min
{φ′i (vn)}n

i=1

1
n

n∑
i=1

EPSnVn

[
d
(
Si , φ

′
i(V

n)
)]

(neglect M)

= min
{φ′(v)}

EP
[
d(S, φ′(V ))

]
.
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General result: Single letter Inner bound

Theorem

For ε ∈ (0,1), (R, κ,∆0,∆1) ∈ Rd (ε) if ∃W, (V ,S)− U −W,

R ≥ IP(W ; U|V ),

κ ≤ κ∗(PW |U ,R),

∆0 ≤ min
φ(·,·)

EP [d (S, φ(W ,V ))] ,

∆1 ≤ 1 (PU = QU) min
φ(·,·)

EQ′ [d (S, φ(W ,V ))]

+ 1 (PU 6= QU) min
φ′(·)

EQ
[
d
(
S, φ′(V )

)]
,

PSUVW = PSUV PW |U , QSUVW = QSUV PW |U , Q′SUVW = QSV |UPUPW |U .
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Concluding Remarks and Open Problems

Distributed HT under a privacy constraint studied with
equivocation and average distortion as privacy measures.

Admits single-letter characterization for special cases.

Open problems

Single-letter outer bound for rate-error exponent-privacy trade-off in
the general HT case ?

Strong Converse holds?

Generalization to more general data sets ?

Exact distributions under the null and alternate hypothesis
unknown- tools in machine learning tools applicable ?
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THANK YOU!
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