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Edge Caching
 Caching at edge nodes help improve user quality of experience (QoE)
o Popular contents stored and served from small cell base stations (SBSs).

o Reduces backhaul cost and delay.

Many solutions exists:
o Uncoded vs. coded caching

o K. Shanmugam et al., “FemtoCaching: Wireless content delivery through distributed caching helpers”, 

IEEE Transactions on Information Theory, 2013.

oK. Poularakis, “Approximation Algorithms for Mobile Data Caching in Small Cell Networks”, IEEE 

Transactions on Communications, 2014 

o Known vs. unknown content popularity
o A. Sadeghi et al., “Optimal and scalable caching for 5g using reinforcement learning of space-time 

popularities”, IEEE Journal of Selected Topics in Signal Processing, 2018 

oP. Yang et al., “Content popularity prediction towards location-aware mobile edge caching”, IEEE 

Transactions on Multimedia, 2018



Dynamic content edge caching

Most Internet content is dynamic.

 E.g., news, weather forecast, social networking videos, virtual reality games.

 Providing personalized experience for users based on the time dependent events.

• Event driven gaming experience in MMORPG games.

 Stale content reduces  user satisfaction.

 Dynamic content in  caches should be updated frequently.

 Updating edge caches frequently burdens backhaul!



Motivation
 Dynamic contents makes the age of contents important for the users:

- Refreshing the contents frequently will maximize the QoE of the users but would 

also increase the backhaul cost.

- Refreshing the contents rarely, will reduce the backhaul cost but would degrade 

the user QoE.

 A smart content refreshment strategy is required for striking a balance between the 

QoE of users and the backhaul cost.

 User preference for varying age of content is different.

 Updating contents requires accessing costly backhaul link.

 User preference is UNKNOWN.



Approach
We formulate the problem as an infinite-horizon Markov 

decision process (MDP) 

 Show that MDP is separable to reduce the exponentially 

large state space.

 Show that the optimal policy has threshold structure on the 

age of the contents.

 We formulate and solve the problem of finding the optimal 

thresholds by a multi armed bandit problem.



System model
 Consider 𝑁 popular contents

 Parameters:

• 𝑝𝑛: popularity of content 𝑛.

• 𝑃𝑟𝑒𝑑𝑖𝑟𝑒𝑐𝑡
𝑛 ℎ𝑛 : probability of 

redirecting content 𝑛, when its age is 

ℎ𝑛.

 State:

• ℎ𝑛 𝑡 : age of content 𝑛 at time 𝑡
 Action:

• 𝒅 𝑡 = 𝑑1 𝑡 , … , 𝑑𝑁 𝑡 : decision 

vector at time 𝑡
• 𝑑𝑛 𝑡 = 1: update content 𝑛
• 𝑑𝑛 𝑡 = 0: do not update 

content 𝑛



Users’ request model

1. User request a content from macro 

base station (MBS)

2. MBS offloads user’s request to SBS for 

service

3. SBS serves the requested content with 

age of ℎ

4. The service process is finished if user is 

satisfied with the age of content; else:

5. User makes another request from SBS

6. MBS serves the user with fresh content



min
𝒅 𝑡

lim
𝑇→∞

1

𝑇
 

𝑡=1

𝑇

𝐶 𝜆𝑟1 𝑡 , … , 𝜆𝑟𝑁 𝑡 , 𝒅 𝑡

• 𝜆 𝑡 : Total number of  users arriving to network at time t

• 𝜆𝑟𝑛 𝑡 : number of requests for content 𝑛, redirected to MBS

• 𝜆𝑟𝑛 𝑡 is governed by the age ℎ𝑛(𝑡) as well as popularity

• 𝐶 𝜆𝑟1 𝑡 , … , 𝜆𝑟𝑁 𝑡 , 𝒅 𝑡 : cost of serving redirected requests when action is 𝒅 𝑡 and age is 𝒉 𝑡

• Linear backhaul cost:

𝐶 𝜆𝑟1 𝑡 , … , 𝜆𝑟𝑁 𝑡 , 𝒅 𝑡 =  

𝑛=1

𝑁

𝐶n 𝜆𝑟𝑛 𝑡 , 𝑑n(𝑡)

• 𝐶𝑛 𝜆𝑟𝑛 𝑡 , 𝑑𝑛(𝑡) = 𝐶𝑛 𝜆𝑟𝑛 𝑡 , 0 + 𝑑𝑛(𝑡)𝐶𝐵𝐻

• 𝐶𝑛 𝜆𝑟𝑛 𝑡 , 0 : cost of 𝜆𝑟𝑛 𝑡 number of users redirected to MBS.

• 𝐶𝐵𝐻: Backhaul cost associated with updating a content

• We aim at minimizing the expected cost over infinite horizon by optimizing the decision vector 𝒅 𝑡 :

Problem Formulation



Optimal policy

𝑑∗(𝑡) = arg𝑚𝑖𝑛𝒅𝑉𝒅(𝒉(𝑡))

Bellman optimality criteria dictates:

 𝒉 𝑡 = ℎ1 𝑡 , ⋯ , ℎ𝑁 𝑡 : state of the system at time 𝑡

ℎ𝑛 𝑡 + 1 = min{ 1 − 𝑑𝑛 𝑡 ℎ𝑛 𝑡 + 1 , ℎ𝑚𝑎𝑥}

 ℎ𝑚𝑎𝑥: Corresponds to an age when the content becomes stale.

 𝑃(  𝒉|𝒉, 𝒅): transition probability,  𝒉 → 𝒉 when action 𝒅 is taken at state 𝒉

 𝑉 𝒉 : value function at state 𝒉

𝑉𝒅 𝒉 : action-value function at state 𝒉 when action 𝒅 is taken

 Bellman equations:

• 𝑉𝒅 𝒉 =  𝐶 𝒉, 𝒅 +𝑃(  𝒉|𝒉, 𝒅) 𝑉(  𝒉)

•  𝐶 𝒉, 𝒅 = 𝑬 𝐶 𝜆𝑟1, … , 𝜆𝑟𝑁, 𝒅

 Expectation is w.r.t  PDF of  𝜆r𝑛



Discussion

 State space of the MDP:

– Number of states increase exponentially with 𝑁

– There are ℎ𝑚𝑎𝑥
𝑁 number of states. ℎ𝑚𝑎𝑥 is the maximum age of a content.

 Action space of the MDP:

– Number of actions is also exponential in 𝑁

– There are 2𝑁 number of actions

MDP suffers from the curse of dimensionality!

Convergence becomes slow 

Implementation requires a look-up table with a large size



Structure of the optimal policy

• Value function separable

𝑉 𝒉 = 𝑉(1) ℎ1 + ⋯ + 𝑉(𝑁)(ℎ𝑁)

• 𝑉(𝑛) ℎ𝑛 : value function for content 𝑛

• Follows from the linearity of cost function

• Hence, each content can be considered separately

• Bellman equations for content 𝑛 becomes

• 𝑉𝑑𝑛

(𝑛)
ℎ𝑛 =  𝐶𝑛 ℎ𝑛, 𝑑𝑛 + 𝑑𝑛𝑉(𝑛) 0 + 1 − 𝑑𝑛 𝑉(𝑛)(ℎ +

1)

Theorem: There exists a threshold 𝐻𝑛 on the age of 

each stored content at which it is optimal to update 

content 𝑛.

Separability of value 

function

optimality of threshold policy 

considerably simplify the 

procedure to find optimal 

decisions



Objective under threshold structure
■ Objective function for each content 𝑛 becomes

min
Hn

 ℎ=0
𝐻𝑛  𝐶𝑛 ℎ,0 +𝐶𝐵𝐻

𝐻𝑛+1

𝐻𝑛 + 1 𝐻𝑛 + 1

age

 𝐶𝑛 0, 0

 𝐶𝑛 1, 0

 𝐶𝑛 𝐻𝑛, 0 + 𝐶𝐵𝐻

Even if cost function is calculated, the 

objective function is hard to solve

Need for a learning

framework

Redirection probabilities are unknown
 𝐶𝑛 ℎ, 0 cannot be analytically computed.

Even if every other statistics is known



 MAB: For each content 𝑛, there is an agent:

– Agent chooses an arm (age update threshold, 𝐻𝑛)

– Observes the random cost,  𝐶 𝐻𝑛 =
 ℎ𝑛=0

𝐻𝑛 𝐶𝑛 𝜆𝑟𝑛 ℎ𝑛 ,0 +𝐶𝐵𝐻

𝐻𝑛+1

 Repeats the process until optimal arm, 𝐻𝑛
∗ is found

Learning optimal thresholds: Multi 
armed bandit (MAB) formulation

 𝑎𝑛 ∈ {0, … , ℎ𝑚𝑎𝑥}: action of agent 𝑛

 𝑞 𝑛 (𝑎𝑛): how favorable is to select threshold 𝑎𝑛 for content 𝑛

MAB agent



𝜖-greedy algorithm

■ Optimal action is chosen according to

𝑎𝑛
∗ = arg min

𝑎𝑛

𝑞 𝑛 (𝑎𝑛)

– First, we need to determine the values of 𝑞 𝑛 (𝑎𝑛)

𝜖-greedy 

chose a random arm

Choose arg min
𝑎𝑛

𝑞 𝑛 (𝑎𝑛)

With probability 𝜖

With probability 1 − 𝜖

exploration improves the estimates 

of non-greedy actions' values

exploitation is favorable when we reach  

sufficiently reliable estimates of action values

take action 𝑎𝑛

Observe sample mean  𝐶 𝑎𝑛

𝑞 𝑛 (𝑎𝑛) ← 𝑞 𝑛 𝑎𝑛 + 𝛼(  𝐶 𝑎𝑛 − 𝑞 𝑛 𝑎𝑛 )

𝛼 is the learning rate 



Numerical 
Results

• 𝜆 𝑡 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 100

• Popularity profile;  

𝑝~𝑍𝑖𝑝𝑓(2)

• 5 applications

• ℎ𝑚𝑎𝑥 = 9

• 𝑃𝑟 ℎ = 1 − 𝑒−0.2ℎ,

• 𝐶 𝑥 = 10𝑥

• 𝐶𝐵𝐻 = 500

Expected regret: cost of the policy learned by MAB agent – optimal cost

Regret goes to zero



Conclusions 
and future 
work

 Balancing user QoE and backhaul cost of updating     

dynamic content caches

 Updating frequently results in higher backhaul cost

 Showed that the MDP is separable: reduced the state 

and action spaces

 Showed the optimal policy is of threshold type in age

 Used multi-armed bandit framework to find efficient 

learning algorithms

 Future work

 Non-linear cost functions

 Random backhaul condition and constraint

 Energy harvesting SBS


