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Introduction

The Setup
Contemporary wireless access schemes need full channel state
information to function optimally.
Kar, Luo, and Sarkar (2007, 2009) have shown that the outdated
channel state information results in strictly suboptimal stability region,
in contrast to outdated queue information which is known to be
inconsequential in terms of stable rate region.

Hence, many follow up works have focused on the problem of joint
probing/learning and scheduling under various network settings and
guarantees. Berry (2004, 2009), Laourine and Tong (2010), etc.

Main Research Question
How can we design an intelligent probing and scheduling algorithm taking
into account probing costs AND under limited probing capability?
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Main Results

1 Sensing and Transmission with an Energy Harvesting (EH)
Transmitter. (IEEE TGCN 2017)

I Time-varying channel with memory (Gilbert-Elliot channel).
I Formulate optimal communication problem as a POMDP.
I Optimal policy is a threshold type policy on the belief state on the

channel state.
I Low complexity numerical solution using policy search (reinforcement

learning technique).
2 Joint probing and scheduling for server allocation in a queuing system

with random connectivity. (ComNet 2016)
I Stationary or Non-Stationary general fading channel model.
I A linear combination of queue-rate (weight) and mutual information is

used to determine the collection of channels to be probed at any given
time.

I Gaussian process regression estimation method is used to arrive at
channel estimates at any time.
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Intelligent Sensing and Transmission in Energy
Harvesting Devices
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Motivation

By 2020, over 50 billion
intelligent devices will be
connected to the Internet.
Disposal of 300 million
batteries a day across the
globe.
Early works focus on
network lifetime
maximization.
Harvesting energy from
ambient energy resources
is an appealing solution.
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Previous Works

Main Design Issue
Energy arrives at random times, in random and minuscule amounts.

Significant past research on how to best manage networks with
random energy sources:

I Offline scheduling policies
M.A. Antepli, E. Uysal-Biyikoglu,H. Erkal, “Optimal packet scheduling on an energy harvesting
broadcast link,” IEEE JSAC, 29(8), 2011.

I Online scheduling policies
Z. Wang, A. Tajer, Xiaodong Wang, “Communication of energy harvesting tags,” IEEE TCOM,
60(4), 2012.

I Pilot-based channel estimation
Y. Cheng, W. Feng, R. Shi and N. Ge, “Pilot-Based Channel Estimation for AF Relaying Using
Energy Harvesting,” IEEE TVT, 66(8), 2017.

I Opportunistic transmission
J. Pradha and S. Kalamkar and A. Banerjee, “Energy Harvesting Cognitive Radio With
Channel-Aware Sensing Strategy,” IEEE COM. Letters, 18(7), 2014.
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Challenge

Observation
Channel state information (CSI) acquisition improves performance
significantly.

However, it consumes energy and time! 8 / 32
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System Model

EH 

transmitter

Rechargeable Battery

Saturated data queue

0
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Gilbert-Elliot channel

Time-varying finite state (Gilbert-Elliot) channel.
Channel state, Gt : Markov chain with two states: GOOD state (1)
and BAD state (0).
If Gt = 1: R bits per time slot; If Gt = 0: zero bits.
Et : binary harvested energy at time t; with Pr (Et = 1) = q.
Transmission: unit energy; sensing: 0 < τ < 1 units.
Finite size battery.
ACK/NACK feedback after each transmission.
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POMDP

Partially Observable Markov Decision Process (POMDP).
I Introduce belief state on channel state.

F Continuous state MDP.

System state: St = (Bt ,Xt)
I Bt : battery level at time t.
I Xt : belief about channel state at time t.

F Conditional probability of channel being in a GOOD state, given the
history. P[Gt = 1|Ht ] = p, where Ht is history.
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Transmission Policy: Deferring

At time slot t, Tx takes action At ∈ {D,O,T}:
1) Defer transmission (D)

I No transmission
I No feedback.
I Belief is updated as J(p) = pλ1 +(1− p)λ0.
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Transmission Policy: Sensing

2) Sense the channel and transmit opportunistically (O)

if channel is GOOD:
I Transmit (1− τ)R bits

in the remainder of
the slot.

I Consume one energy
unit in total.

I p = λ1

if channel is BAD:
I Remains silent.
I Saves 1− τ units of

energy.
I p = λ0
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Transmission Policy: Transmit without sensing

3) Transmit without sensing (T)
I Transmit R bits without sensing.
I Learns channel state thanks to the feedback.
I Receive ACK: p = λ1; receive NACK: p = λ0.
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MDP Formulation

State of the system: St = (Bt ,Xt)

Discounted Reward (β : discount factor)

V π(b, p) = E

[
∞

∑
t=0

β
tR(St ,At)|S0 = (b, p)

]
,

for all b ∈ {0,τ, . . . ,Bmax} and p ∈ [0, 1] , where

R(St ,At) =


XtR if At = T and Bt ≥ 1,
(1− τ)XtR if At = O and Bt ≥ 1,
0 At = D.
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Action-Value Function

VA(b, p): Action-value function
I expected infinite-horizon discounted reward of taking action A at state

(b, p).

Bellman optimality equation

V (b, p) = max
A∈{D,O,T}

{VA(b, p)} .
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Value Function Properties

Lemma (Increasing)

Value function is increasing in b, i.e., V (b1, p)≥V (b0, p) when
b1 > b0.
Value function is increasing in p, i.e., V (b, p1)≥V (b, p0) when
p1 > p0.

Lemma (Convex)

For any given b≥ 0, V(b, p) is convex in p.
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Structure of the Optimal Policy

Theorem

For any p ∈ [0, 1] and b≥ 0, there exist thresholds
0≤ ρ1(b)≤ ρ2(b)≤ ρ3(b)≤ 1, such that, for b≥ 1

π
∗(b, p) =


D, if 0≤ p≤ ρ1(b) or ρ2(b)≤ p≤ ρ3(b)
O, if ρ1(b)≤ p≤ ρ2(b),
T, if ρ3(b)≤ p≤ 1,

(1)

and for τ ≤ b < 1,

π
∗(b, p) =

{
D, if 0≤ p≤ ρ1(b) or ρ2(b)≤ p≤ 1,
O, if ρ1(b)≤ p≤ ρ2(b).

(2)

For b≥ 1, at most three thresholds.
For b < 1, at most two thresholds.
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Numerical Results: Effect of Sensing Duration

Optimal thresholds for taking actions D (blue), O (green), T (yellow) for
Bmax = 5, β = 0.98, λ1 = 0.9, λ0 = 0.6, R = 3 and q = 0.1.

τ = 0.2. τ = 0.5.
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Numerical Results: Throughput

Bmax = 5, τ = 0.2, β = 0.999, λ1 = 0.8, λ0 = 0.2, R = 2.
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Policy search

Value iteration algprithm

Single-threshold policy

Opportunistic policy

Greedy policy

Policy search: Optimal
thresholds.
Value iteration algorithm:
Bellman optimality
equations.
Single-threshold policy:
only defer or transmit.
Opportunistic policy:
always sense the channel.
Greedy policy: transmit
whenever there is energy.
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Summary

Intelligent channel sensing improves performance of EH transmitters.
Proved that optimal policy is a battery-dependent threshold policy on
belief state.
Calculated optimal threshold values numerically using value iteration
and policy search algorithms.
Extension to multi-state generalized Gilbert-Elliot channels.
Variable sensing cost controls channel sensing accuracy.
Estimating the unknown statistics using machine learning
techniques.
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Intelligent Probing and Scheduling in Cellular
Networks with General Fading
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Motivation

A (t)
R (t)1

R (t)N

user N

user 1

.  .  .

.  .  .

1

A (t)
N

The seminal work of Tassiulas and Ephremides on server allocation in
a queuing system with random connectivity showed that MaxWeight
policy achieves a %100 throughput.
Practically infeasible to obtain the full CSI.
Outdated CSI results in strict suboptimality whereas outdated queue
information inconsequential in terms of stable rate region.
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Previous Work

Main Design Issue
Channel statistics unavailable in general.

Known underlying channel dynamics
I A. Gopalan, C. Caramanis and S. Shakkottai. Low-delay Wireless Scheduling with

Partial Channel-State Information. Proceedings of IEEE Infocom, Orlando, FL,
2012.

I A. Duel-Hallen. Fading channel prediction and estimation for mobile radio adaptive
transmission systems. Proc. of IEEE, 2007.

I W. Ouyang, S. Murugesan, A. Eryilmaz, and N. B. Shroff. Exploiting channel
memory for joint estimation and scheduling in downlink networks. Proceedings of
INFOCOM, 2011.

Gaussian process regression in wireless networks
I D. Gu and H. Hu. Spatial gaussian process regression with mobile sensor networks.

IEEE Trans. Neural Netw. Learn. Syst., 2012.
I A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian

processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res.,
2008.

I F. Perez-Cruz, et al. Gaussian processes for nonlinear signal processing. IEEE Signal
Process. Mag., 2013.
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System model

N quasi-static downlink channels.
cn(t): channel gain, stays constant for one slot; but changes
continuously from one slot to another.
Rn(t): achievable rate, upper bounded by Shannon rate.
Qn(t): queue length.
Unsaturated queues with arrivals An(t): amount of data arriving with
λn = E(An(t))
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Optimal Scheduling

Λh: Capacity region of the network, set of all possible (λ1, . . . ,λN),
that can be stabilized by the network.
Max weight scheduling (MWS) achieves Λh by choosing:

n∗ = argmin
n

Wn(t) = argmin
n

Qn(t)Rn(t) (3)

However, MWS needs to know Rn(t) (cn(t)) for all n.
The feedback channel can support feedback from L < N users. S(t):
set of L users whose CSI is acquired.
Then MWS solves the following:

n∗ = arg min
n∈S(t)

Wn(t) = arg min
n∈S(t)

Qn(t)Rn(t) (4)

25 / 32



Research question

π(η): joint channel probing and scheduling policy that works together
with a channel prediction algorithm η .
Let Λ π(η) be the capacity region achieved by π(η).

Research problem

Find a scheduling policy, π(η), that determines S(t) such that its Λ π(η)

becomes as close as possible to Λh.

ĉn(t), R̂n(t), predicted values.
L users added to S(t) with highest estimated Ŵn(t) = R̂n(t) ·Qn(t).
Let ρπ(η)(Q(t)) = P(Wn(t) = Ŵn(t)|Q(t)).
It can be shown that if ρπ(η)(Q(t))≥ ε , then Λ π(η) ⊆ ε ·Λh
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Adding the element of surprise!

Some users with smaller backlogs may not be probed for a long time!
We need to modify π(η).

Iπ(η)
n (t): information of an unexplored channel.
Information of a channel observed recently and many times before is
less than the channel not been probed for a long time or one that
varies rapidly.
Hence, S(t) is determined according to Multi-Objective Scheduling and
Feedback (MOSF) algorithm as follows:

I Ŵn(t) = Qn(t)∗ R̂n(t)+ζ In(t)
I add L users with highest values of Ŵn(t) to S(t).
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Prediction using Gaussian Process Regression (GPR)

Predict the value of R̂n(t) using GPR:
I cn = (c1

n,c
2
n, . . . ,c

w
n ) latest w CSI values.

I taken at times τ = (τ1
n ,τ

2
n , . . . ,τ

w
n ) for user n before t.

I Gaussian kernel function, kn(τ
i
n,τ

j
n) describes the correlation of channel

n between two of its measurements taken at times τ i
n, and τ

j
n .

Posterior distribution of cn(t) given cn and τ is Gaussian with mean
ĉn(t) and variance vn(t) calculated as follows.

ĉn(t) = kT
n (t)Kncn, vn(t) = kn(t, t)−kT

n (t)Knkn(t) (5)

where kn(t) = [kn(τ
i
n, t)]i.

In GPR method it turns out that: argmaxn In(t) = argmaxn vn(t)
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Numerical Results

AAE: average channel estimation error.
L = 4, N = 16 by MOSF algorithm.
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Numerical Results

LAR: by p previous values of CSI uses Auto-regression (AR) model to
predict the CSI.
LAR probes L users with the highest backlog-estimated rate product.
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Summary

Cost and practicality of obtaining CSI cannot be neglected.
In general, wireless channel statistics is unknown and possibly
non-stationary.
Developed a learning framework to probe/learn/schedule wireless users
with provable performance.
Proving performance guarantees difficult with learning algorithms in
wireless networks demanding further research.
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Thank You!
Collaborators
Mehdi Abad (Sabanci University), Deniz Gunduz (Imperial College London),
Mehmet Karaca (Ericsson), Tansu Alpcan (University of Melbourne).
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