SEARCH FOR CP-VIOLATION AS A GUIDING STAR TOWARDS

NEW PHYSICS

Yasaman Farzan

School of theoretical physics, IPM, Tehran

In memory of dear Durmus

Charge conjugation

- Quantum Field Theory:
- Each charged particle has an antiparticle.
- Electron (positron)
- Muon 🔶 Anti-muon

Charge conjugation

- Quantum Field Theory:
- Each charged particle has an antiparticle.
- Electron (positron)
- Muon 🔶 Anti-muon

Parity

Spatial inversion

$$\begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{pmatrix} \in O(3), \not \in SO(3)$$

$$\operatorname{Det}\left[\begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{pmatrix}\right] \neq -1$$

Fundamental interactions

- Gravity
- Electromagnetism
- Strong interaction
- Weak interaction
- Yukawa interaction (Higgs interaction with elementary fermions)

Fundamental interactions

- Gravity
- Electromagnetism
- Strong interaction
- Weak interaction
- Yukawa interaction (Pion-nucleon Yukawa interaction is not a fundamental interaction but a form of strong interaction at low energies.)

Fundamental interactions

	\mathcal{P}	\mathcal{T}	\mathcal{C}	
 Gravity 	\checkmark	\checkmark		
 Electromagnetism 				
 Strong interaction 				
 Weak interaction 	×	0	×	
 Yukawa interaction 	0	Ο	0	

Discovery of parity violation

December 1956

In weak interaction

- P is violated.
- C is violated.
- T is violated.
- CP?
- -+T?
- CPT is anyway conserved!

Weak interaction and CP

$$W_{\mu}(J^{\mu}_{hadron} + J^{\mu}_{lepon})$$

$$J_{lepon}^{\mu} = \bar{e}\gamma^{\mu}(1-\gamma_{5})\nu_{e} + \bar{\mu}\gamma^{\mu}(1-\gamma_{5})\nu_{\mu} + \bar{\tau}\gamma^{\mu}(1-\gamma_{5})\nu_{\tau}$$
$$J_{hadron}^{\mu} = (V_{CKM})_{ij}\bar{d}_{i}\gamma^{\mu}(1-\gamma_{5})u_{j}$$

Mass eigenstates \neq Flavor (weak) eigenstates

Establishing CP violation

$$K^0 = d\bar{s} \quad \bar{K}^0 = s\bar{d}$$

$$CP|K^0\rangle = |\bar{K}^0\rangle \quad CP|\bar{K}^0\rangle = |K^0\rangle$$

CP eigenstates

$$|K_1\rangle = \frac{1}{\sqrt{2}}(|\bar{K}^0\rangle - |K^0\rangle)$$
$$|K_2\rangle = \frac{1}{\sqrt{2}}(|\bar{K}^0\rangle + |K^0\rangle)$$

$$CP|K_1\rangle = |K_1\rangle \ CP|K_2\rangle = -|K_2\rangle$$

Mass eigenstates

$$|K_{S}\rangle |K_{L}\rangle$$

$$K_{S} \to 2\pi^{0}, \pi^{+}\pi^{-} \quad K_{L} \to 3\pi^{0}, \pi^{+}\pi^{-}\pi^{0}$$

$$|K_{L}\rangle = \frac{1}{\sqrt{2(1+|\bar{\epsilon}|^{2})}}[|K_{2}\rangle + \bar{\epsilon}|K_{1}\rangle]$$

$$|K_{S}\rangle = \frac{1}{\sqrt{2(1+|\bar{\epsilon}|^{2})}}[|K_{1}\rangle + \bar{\epsilon}|K_{2}\rangle]$$

$$Br(K_{L} \to \pi^{+}\pi^{-}) = 1.97 \times 10^{-3}$$

$$Br(K_{L} \to \pi^{0}\pi^{0}) = 8.64 \times 10^{-4}$$

Matter anti-matter asymmetry

Sakharov's conditions:

- Out of equilibrium
- Baryon number violation
- C and CP violation

Dipole moment

Magnitude dipole moment

Elementary fermions

CPT is of course conserved

EDM and MDM

Radiative correction

No EDM at any loop level from QED Because of CP symmetry

Loop level electron EDM from CKM matrix

$$d_{e}^{\text{Fig.1a}} \sim e\mathcal{J} \frac{m_{e}m_{c}^{2}m_{s}^{2}}{m_{W}^{6}} \frac{\alpha_{W}^{3}\alpha_{s}}{(4\pi)^{4}},$$
$$d_{e}^{\text{Fig.1b}} \sim e\mathcal{J} \frac{m_{e}m_{c}^{2}m_{s}^{2}}{m_{W}^{4}m_{\text{had}}^{2}} \frac{\alpha_{W}^{2}\alpha^{3}}{(4\pi)^{5}},$$

$$\mathcal{J} = s_1^2 s_2 s_3 c_1 c_2 c_3 \sin \delta \simeq 2.9 \times 10^{-5}$$

Pospelov and Ritz, *Phys.Rev.D* 89 (2014) 5, 056006

$$d_e(\mathcal{J}) \sim O(10^{-44}) \ ecm.$$

Loop level electron EDM from CKM matrix

$$\mathcal{J} = s_1^2 s_2 s_3 c_1 c_2 c_3 \sin \delta \simeq 2.9 \times 10^{-5}$$

$$d_{e}^{\text{Fig.1a}} \sim e\mathcal{J} \frac{m_{e}m_{c}^{2}m_{s}^{2}}{m_{W}^{6}} \frac{\alpha_{W}^{3}\alpha_{s}}{(4\pi)^{4}},$$
$$d_{e}^{\text{Fig.1b}} \sim e\mathcal{J} \frac{m_{e}m_{c}^{2}m_{s}^{2}}{m_{W}^{4}m_{\text{had}}^{2}} \frac{\alpha_{W}^{2}\alpha^{3}}{(4\pi)^{5}},$$

$$d_e(\mathcal{J}) \sim O(10^{-44}) \text{ ecm.}$$

$$m_e^{-1} \sim 4 \times 10^{-11} \mathrm{cm}$$

Loop level electron EDM from CKM matrix

$$\mathcal{J} = s_1^2 s_2 s_3 c_1 c_2 c_3 \sin \delta \simeq 2.9 \times 10^{-5}$$

$$d_{e}^{\text{Fig.1a}} \sim e\mathcal{J} \frac{m_{e}m_{c}^{2}m_{s}^{2}}{m_{W}^{6}} \frac{\alpha_{W}^{3}\alpha_{s}}{(4\pi)^{4}},$$
$$d_{e}^{\text{Fig.1b}} \sim e\mathcal{J} \frac{m_{e}m_{c}^{2}m_{s}^{2}}{m_{W}^{4}m_{\text{had}}^{2}} \frac{\alpha_{W}^{2}\alpha^{3}}{(4\pi)^{5}},$$

$$d_e(\mathcal{J}) \sim O(10^{-44}) \text{ ecm.}$$

D. A. Demir and Y. F.,

"Can measurements of electric dipole moments determine the seesaw parameters?," JHEP 10 (2005), 068

D.A. Demir and Y.F., "Correlating mu parameter and right-handed neutrino masses in N=1 supergravity," JHEP 03 (2006), 010

D. A .Demir and Y.F.,

"On the Sources of CP-violation Contributing to the Electric Dipole Moments," eConf C0605151 (2006), 0005

ELEMENTARY PARTICLES

 $m_{\nu} \ll m_e$ $m_{\nu} < 10^{-12} m_t, m_H$

Seesaw mechanism

$$(\nu^T \ N^T) c \begin{pmatrix} 0 & m_D \\ m_D & M_N \end{pmatrix} \begin{pmatrix} \nu \\ N \end{pmatrix} \qquad c = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$m_D \ll m_N \longrightarrow m_\nu = -\frac{m_D^2}{m_N} \ll m_D$$

Yukawa couplings

Complex Yukawa couplings

 $Y_{i\alpha}H^0\bar{N}_i\nu_\alpha + Y^*_{i\alpha}H^0\bar{\nu}_\alpha N_i$

Hermitian conjugate

Some phases can be absorbed by rephasing the left-handed neutrinos

 $Y_{i\alpha}H^T \bar{N}_i cL_\alpha + M_i N_i^T cN_i$ $(m_D)_{i\alpha} = Y_{i\alpha} \langle H \rangle$

Remaining phases are physical and source of CP violation

Leptogenesis

$$\begin{array}{c} Y_{i\alpha}H^T\bar{N}_icL_{\alpha} + M_iN_i^TcN_i \end{array} & \begin{array}{c} \text{Lepton number violation} \\ (m_D)_{i\alpha} = Y_{i\alpha}\langle H \rangle \end{array} \end{array}$$

New sources of CP violation

Super-symmetry

Each particle has a super-partner

New sources of CP violation

$$W = Y_{\ell}^{ik} \epsilon_{\alpha\beta} H_{1\alpha} E_i L_{j\beta} - Y_{\nu}^{ij} \epsilon_{\alpha\beta} H_{2\alpha} N_i L_{j\beta} - \mu \epsilon_{\alpha\beta} H_{1\alpha} H_{2\beta} + \frac{1}{2} M_{ij} N_i N_j$$

Y.F. and M. Peskin, Phys Rev D 70 (2004) 095001

Bound back then (2005)

$$d_e < 1.7 \times 10^{-27} \ e \ \mathrm{cm}$$

Now

$$d_e < 4.1 \times 10^{-30} e \cdot \mathrm{cm}$$

$$d_e \sim 4.1 \times 10^{-35} e \cdot \mathrm{cm}$$

■ Future ??

S. K. Lamoreaux, arXiv:nucl-ex/0109014

Mu term as source of CP violation

D. A. Demir and Y. F.,

"Can measurements of electric dipole moments determine the seesaw parameters?," JHEP 10 (2005), 068

Yukawa coulings as source of CP violation

Mu term as source of CP violation

D. A. Demir and Y. F.,

"Can measurements of electric dipole moments determine the seesaw parameters?," JHEP 10 (2005), 068

Yukawa coulings as source of CP violation

Testing supersymmetric leptogenesis

Take-home message

- Relatively low budget experiments looking for electron EDM can give us great insight:
- 1) symmetries of nature
- 2) Matter asymmetry of universe

Take-home message

- Relatively low budget experiments looking for electron EDM can give us great insight:
- 1) symmetries of nature
- 2) Matter asymmetry of universe

Durmus was a great friend and a dedicated physicists whose memory and enthusiam for science will be remembered and will be a guiding star in the stormy days of research.

Low energy scheme

Hadrons are all color singlets:

$$N = \begin{pmatrix} p \\ n \end{pmatrix} \quad \Pi = \begin{pmatrix} \pi^+ \\ \pi^0 \\ \pi^- \end{pmatrix}$$

Yukawa interaction:

$$\bar{N}\Pi\cdot\tau\gamma_5N$$

Short range: Range given by inverse of mass pion.