
Student(s) Faculty Member(s) Company Advisor(s)

Manual authoring of JSON test cases slows down Siemens SIMATIC firmware validation, consuming

up to 40% of engineers’ time.

This project delivers an automated pipeline that converts Siemens specification PDFs into validated

JSON test suites, including systematically generated negative tests. A Gradio-based interface allows

instant validation, execution, and auto-refinement.

The prototype achieves a 12× speed-up over manual authoring while maintaining 93% schema

conformance, demonstrating the potential of AI-assisted automation for safety-critical industrial

software.

Methodology

PDF Parsing: Extracted specification text using PyPDF2 with Unicode-safe pre-processing.

LLM-Driven Generation: Prompted GPT-4-o to produce schema-valid JSON plus 15 negative test

variants.

Validation: jsonschema + pydantic checks ensure strict conformance to Siemens’ Test Configuration

Schema v1.4.

Interactive UI: Gradio interface supports upload → JSON inspection → test execution → auto-

refinement.

Closed-Loop Refinement: Failed test cases are re-submitted to GPT-4-o until convergence (max 3

iterations).

ABSTRACT

PROJECT DETAILS

PROJECT DETAILS II

Artificial Intelligence-supported Software Test Automation

in Development of SIMATIC Industrial Products

Emre Kaan Usta Cemal Yılmaz Haluk Şahin, Görkem İnci
Tutku Söker

OBJECTIVES

REFERENCES

REFERENCES

[1] OpenAI. GPT 4o Model Card, 2025.

[2] Pedregosa F. et al. “Scikit learn: Machine Learning in Python.” JMLR, 2011.

[3] Siemens AG. SIMATIC Test Configuration Schema v1.4, internal doc, 2024.

CONCLUSIONS

•Automate conversion of Siemens SIMATIC specification PDFs into JSON test suites.

•Provide schema validation and negative test generation.

•Enable one-click execution and auto-refinement.

•Gather weekly Siemens feedback and refine UI/UX.

Appendix 6: Automated

Validation and Refinement:

This option allows the system to

automatically compare expected

outcomes with actual test results.

If there is a mismatch, the system automatically corrects its own output

without the need for manual feedback. This closed-loop process is a key

part of the auto-refinement workflow.

Appendix 5: Execution Controls:

This section allows users to specify the executable
path for the Siemens test harness. It also provides

options for adding command-line parameters, or
"resource flags," directly from

the UI. This functionality is key
for one-click execution of the

generated test cases.

Appendix 4: Feedback and Refinement:

This feature enables users to manually refine
test cases. Users can select a specific test case
and provide feedback or corrections in a text
box. The system then uses this feedback to
refine the selected test cases, which are then
shown again in the "Test Cases JSON" section.

Appendix 3: Test Cases JSON:

This area displays all the generated test
cases. The system creates these test cases
as equivalence classes, which can be seen

along with their names, expected outcomes,
and the JSON data. This ensures a

comprehensive set of test scenarios is
created for thorough validation.

Appendix 1: AI Service Selection:

This UI section lets users pick the

LLM for test case generation. Users

can choose between

mistral-7b-instruct, gpt-4, and a

local model. This provides

flexibility, allowing users to select a

model based on cost or

performance needs

Appendix 2: Valid Configuration

Schema:

This panel shows a valid

configuration schema derived

directly from the uploaded PDF

document. It helps users understand

what a correctly formatted JSON

output looks like. This is essential

for user inspection and ensures the

primary output is clear and

verifiable.

This project has successfully created a comprehensive, end-to-end toolchain that automates the

generation of test cases for Siemens' SIMATIC firmware. The tool takes a specification PDF and

converts it into a valid JSON test suite, which can then be executed using Siemens' existing test

harness.

The solution was a collaborative effort with Siemens engineers, who provided weekly feedback to

ensure the final product directly addresses their real-world needs and pain points. All core

functionalities—including automated extraction, validation, execution, and an interactive correction

loop—are fully operational and have been demonstrated with live documents.

By automating the most repetitive and time-consuming aspects of test-case authoring, this tool

provides a solid foundation for faster and more reliable firmware validation. It reduces manual effort,

maintains product safety by validating output against the official Siemens schema, and accelerates

the feedback loop through an interactive user interface.

	Slide 1

