Artificial Intelligence-supported Software Test Automation ..Sabanci .| EACULTYOF

Universites: | NATURAL SCIENCES

in Development of SIMATIC Industrial Products

Student(s) Faculty Member(s) Company Advisor(s)

Emre Kaan Usta Cemal Yilmaz Haluk Sahin, Gérkem Inci
Tutku Soker

. ABSTRACT N[PROJECT DETAILS |l h

Manual authoring of JSON test cases slows down Siemens SIMATIC firmware validation, consuming — Appendix 3: Test Cases JSON:
up to 40% of engineers’ time.

This project delivers an automated pipeline that converts Siemens specification PDFs into validated This area displays all the generated test
JSON test suites, including systematically generated negative tests. A Gradio-based interface allows cases. The system creates these test cases
instant validation, execution, and auto-refinement. as equivalence classes, which can be seen
The prototype achieves a 12x speed-up over manual authoring while maintaining 93% schema along with their names, expected outcomes,
conformance, demonstrating the potential of Al-assisted automation for safety-critical industrial and the JSON data. This ensures a
software. comprehensive set of test scenarios is

created for thorough validation.

PDF — JSON + Feedback + Execution

5 Upload PDF 1l 3 —_
plea Valid Configuration Schema

0

= Appendix 4: Feedback and Refinement: Select Test Case

Drop File Here

Click to Upload

This feature enables users to manually refine Feedback/Comections
test cases. Users can select a specific test case

and provide feedback or corrections in a text

box. The system then uses this feedback to

refine the selected test cases, which are then

shown again in the "Test Cases JSON" section.

Radio Test Cases JSON

© chatgpts gpt-do ol

Generate JSON

Refine Selected Test Case

Feedback/Corrections

Validation Status

RefineSelected Tt Case Appendix 5: Execution Controls:

Executable Path
Executable Path Resource Flag ~force-reboot —verbose

This section allows users to specify the executable

sl s e 0 et dist/test_case_checker path for the Siemens test harness. It also provides
i options for adding command-line parameters, or
"resource flags," directly from
Resource Flag -force-reboot —-verbose the UI. This fu nCtiOna"ty iS key
O —resource-config) for one-click execution of the
generated test cases.
Run Selected Test Case Validate & Auto-Refine
g
Appendix 6: Automated e
Methodology Validation and Refinement:
PDF Parsing: Extracted specification text using PyPDF2 with Unicode-safe pre-processing.
LLM-Driven Generation: Prompted GPT-4-o0 to produce schema-valid JSON plus 15 negative test This St allows the system to U ldate & Ao Rofine
R, automatically compare expected

outcomes with actual test results.

Validation: jsonschema + pydantic checks ensure strict conformance to Siemens’ Test Configuration
If there is a mismatch, the system automatically corrects its own output

Schema v1.4. . . .

: .. , : , without the need for manual feedback. This closed-loop process is a key
In;eractlvte Ul: Gradio interface supports upload — JSON inspection — test execution — auto- part of the auto-refinement workflow.
refinement.

Closed-Loop Refinement: Failed test cases are re-submitted to GPT-4-o0 until convergence (max 3

iterations).
CONCLUSIONS
OBIJECTIVES
- Automate conversion of Siemens SIMATIC specification PDFs into JSON test suites. This project has successfully created a comprehensive, end-to-end toolchain that automates the
generation of test cases for Siemens' SIMATIC firmware. The tool takes a specification PDF and
*Provide schema validation and negative test generation. converts it into a valid JSON test suite, which can then be executed using Siemens' existing test
harness.

*Enable one-click execution and auto-refinement. . . - . .
The solution was a collaborative effort with Siemens engineers, who provided weekly feedback to

+Gather weekly Siemens feedback and refine UI/UX. ensure the final product directly addresses their real-world needs and pain points. All core
functionalities—including automated extraction, validation, execution, and an mteractive correction
loop—are fully operational and have been demonstrated with live documents.
By automating the most repetitive and time-consuming aspects of test-case authoring, this tool
PROJECT DETAILS provides a solid foundation for faster and more reliable firmware validation. It reduces manual effort,
maintains product safety by validating output against the official Siemens schema, and accelerates
the feedback loop through an interactive user interface.

Appendix 1: Al Service Selection:
Radio

O mistral-Th-instruct ept-4 deepseek-r1-distill-qwen-Th This UI section lets users pick the _ 1 1
LLM for test case generation. Users Current Status
can choose between Automate PDF — JSON generation Implemented and demonstrated live in weekly calls
Generate JSON mistral-7b-instruct, gpt-4, and a Provide schema validation Default configuration and all negative tests checked
9 9

against Siemens schema
Enable one-click execution Run Selected Test Case button executes through

local model. This provides
flexibility, allowing users to select a
model based on cost or
performance needs

test case checker

Gather continuous Siemens feedback | Weekly meetings held; requests tracked and fed into
backlog

Expose adjustable equivalence-class | Backend complete; front-end slider pending

count

Appendix 2: Valid Configuration
Schema:

Valid Configuration Schema

This panel shows a valid

configuration schema derived REFERENCES

directly from the uploaded PDF

document. It helps users understand REFERENCES
what a correct.ly fom.lat.ted J SON 1] OpenAl. GPT 40 Model Card, 2025.
output looks like. This 1s essential 2] Pedregosa F. et al. “Scikit learn: Machine Learning in Python.” JMLR, 2011.

for HSet inspecti.on and ensures the 33: Siemens AG. SIMATIC Test Configuration Schema v1.4, internal doc, 2024.
primary output 1s clear and

verifiable.

	Slide 1

